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Abstract

Proteochemometric (PCM) is an approach for bioactivity predictive modeling which models the
relationship between protein and chemical information. Gaussian Processes (GP), based on Bayesian
inference, provide the most objective estimation of the uncertainty in predictions, thus permitting
the evaluation of the applicability domain (AD) of the model. Furthermore, the experimental error
on bioactivities measurements can be used as input for this probabilistic model.

In this study, we apply GP implemented with a panel of kernels on three various (and multispecies)
PCM datasets. The first dataset consisted of information from 8 human and rat adenosine receptors
with a number of small molecule ligands and their binding affinity. The second consisted of the
catalytic activity of four dengue virus NS3 proteases on 56 small peptides. Finally, we have gathered
bioactivity information of small molecule ligands on 91 aminergic GPCRs from 9 different species,
leading to a dataset of 24,593 datapoints with a matrix completeness of only 2.43%.

GP models trained on these datasets are statistically sound, at the same level of statistical
significance as Support Vector Machines (SVM), with R2

0 values on the external dataset ranging
from 0.68 to 0.92, and RMSEP values close to the experimental error. Furthermore, the best GP
models obtained with the Normalized Polynomial and radial kernels provide intervals of confidence
for the predictions in agreement with the cumulative Gaussian distribution. GP models were also
interpreted on the basis of individual targets and of ligand descriptors. In the dengue dataset, the
model interpretation in terms of the amino-acid positions in the tetra-peptide ligands gave
biologically meaningful results.

Keywords: Proteochemometrics; Bayesian Inference; Gaussian Process; Chemogenomics; GPCRs;
Adenosine Receptors; Applicability Domain

Introduction
The advent of high-throughput (HT) technologies has contributed in the last decades to a vast data

increase in proprietary and public bioactivity databases. In a parallel manner, a large amount of

biological data has been collected on protein structure and sequence information for numerous

species. Chemogenomic techniques[1–3] can capitalize on this large amount of information by mod-

eling the relationships between the chemical and the biological space. This data integration permits

the bioactivity prediction of compound-target combinations lying in regions of the drug-target

interaction space which are sparsely sampled by experimental measurements. These techniques
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are based on the similarity principle[4, 5], which follows the premise that similar compounds (and

targets)[6] are more likely to exhibit akin bioactivity profiles in comparison to structurally distant

structures. Among others, chemogenomic approaches have enabled: (i) the prediction of protein

targets for new compounds based on the bioactivity profiles of similar compounds,[7–9] (ii) the

study of protein similarity on the basis of the similarity of their ligands,[10, 11] and (iii) receptor

deorphanization.[12]

In the field of chemogenomics, Proteochemometrics (PCM)[6] uses machine learning models

to relate compounds to their biomolecular targets (usually proteins). PCM extends traditional

Quantitative Structure Activity Relationship (QSAR)[13] by allowing to both inter- and extrapolate

in the target and/or chemical spaces. Therefore, compounds can be optimized not only with respect

to their affinity on a target,[14] but also by taking into account their selectivity.[15] In that way, PCM

also permits to detect compound substructures conferring inhibitory activity to a panel of related

biomolecular targets.[14]

Although the relevance of PCM has been confirmed by both in silico and experimental validation,[6,

16] current methods cannot: (i) inherently determine the applicability domain (AD) of a model, or

(ii) provide individual confidence intervals for each prediction.

The applicability domain (AD) of a bioactivity model is defined as the range of chemical (and

target in PCM) space to which the model can be reliably applied.[17–19] Therefore, the AD is a

measure of the generalization properties of a given model: the volume of chemical (descriptor)

space that can be reliably predicted.[20] Given that compounds are encoded with descriptors when

training predictive models, it is important to distinguish between the chemical space (referring

to chemical structures) and the chemical descriptor space. This distinction is important as in the

calculation of some popular descriptors (e.g. Morgan fingerprints)[21], chemical substructures are

hashed: different chemical substructures are mapped at the same descriptor position. Consequently,

two different structures in the chemical space can be represented by the same descriptor values. A

detailed discussion of the different methods proposed to assess models AD can be found in Ref.,[20]

to which the interested reader is referred. In PCM, the AD is an essential feature, as extrapolation

has to be used to predict the bioactivity for new chemicals on new targets.[6]

In parallel to the concern about the evaluation of individual bioactivity predictions, recent publica-

tions have aimed at establishing the level of uncertainty in public bioactivity databases.[22–25] In

this vein, Brown et al.[26] highlighted the importance of including the uncertainty of bioactivity

data into the evaluation of models quality. Hence, predictive models should be assessed through:

the analysis of the experimental error of the data, the evaluation of the models AD as well as the

definition of intervals of confidence for the predictions. However, acceptable levels of prediction

errors are also determined by the context in which the model will be applied. Indeed, models

exhibiting high prediction errors can be nevertheless useful in a high-throughput (HTS) campaign

while not being suitable in lead optimization.[26]

Bayesian inference provides a reliable theoretical framework to handle all previously mentioned

aspects within a unique bioactivity model. Gaussian Processes (GP) are a non-parametric machine
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learning method based upon Bayesian inference: they thus permit an evaluation of the AD of a given

model as well as providing the most objective estimation of the predictions uncertainty. Furthermore,

the experimental bioactivity error can be used as model input. A GP prediction of a given compound-

target combination is a Gaussian distribution whose variance defines intervals of confidence: in

principle, this variance measures the distance of the compound-target pair to the training set.

GP models can be globally validated by traditional statistical metrics (e.g. R2 or Q2)[27–29] while

also providing individual assessment for predictions. GP were firstly introduced in the field of

QSAR modeling by Burden et al..[30] Later on, GP were also used for: (i) the modeling of ADMET

properties,[31, 32] (ii) the prediction of electrolyte solubility,[33] (iii) the bioactivity prediction of

small peptide datasets,[34–36] (iv) protein engineering,[37] and (v) the bioactivity prediction of

bioactivity-focused (GPCRs) combinatorial chemolibraries.[38] The purpose of the present study

is to propose Gaussian Process (GP) to simultaneously model chemical and multispecies protein

information in the frame of PCM. GP models are validated by comparing their performance to

that of SVM using a panel of kernels. on two PCM datasets extracted from ChEMBL database,[39]

involving adenosine receptors (10,999 data points, 8 sequences) and aminergic GPCRs (24,593 data

points, 91 sequences), and on a third dataset extracted from the literature concerning the catalytic

activity of four dengue virus NS3 proteases (199 data points, 4 sequences). GP perform as well

as SVM, with statistically non-significant differences in performance. Nonetheless, GP provide

additional information with respect to SVM, namely the uncertainties on individual bioactivity

predictions. GP also permit the interpretation of the models with respect to the targets of adenosine

receptors and GPCR datasets, and also with respect to the ligand descriptors.

Materials and Methods
Datasets

Aminergic GPCRs

The aminergic GPCRs dataset was assembled by gathering bioactivity information of 91 different

receptors (9 species) from ChEMBL 15,[39] producing a total number of datapoints of 24,593. A

high quality bioactivity dataset was assembled by keeping only assay-independent bioactivity

information, namely: the constant of inhibition, Ki, and the constant of dissociation, Kd. In those

cases where a given compound-target pair had multiple bioactivity values annotated, the mean

value was used. Moreover, annotations with anything other than ’=’ were discarded. Agonist,

antagonist and partial agonist ligands were included. Bioactivity values in the dataset range from

2.030 to 11.570 pKi units. The component amino acids of the transmembrane binding site were

taken from Gloriam et al.[40] Further information about the dataset can be found in Table 1 and

Table S2.

Adenosine Receptors

This dataset previously published by van Westen et al.[16] is composed of 10,999 bioactivity data

points measured on the rat and human adenosine receptors, A1, A2A, A2B and A3. The dataset was
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extracted from ChEMBL2.[39] Only compounds tested on rat or human receptors by radio-ligand

binding assays and for which pKi bioactivity values were annotated with a ’=’ relationship were

included in the final dataset. Bioactivity values range from 4.50 to 10.52 pKi units. Compounds were

normalized and ionized at pH 7.4. Subsequently, they were assigned 2D coordinates and converted

to fingerprints. asurements in our modeling pipeline. See Table 1 for further details about the dataset.

Dengue Virus NS3 Proteases

This dataset was collected from the proteochemometric study published by Prusis et al.,[41] which

modeled the catalytic activity of the Dengue virus NS3 proteases from four viral serotypes using

datapoints measured on 56 different tetra-peptide substrates (Table 1). These substrates were

designed to evaluate the role amino acid residues located at P1’-P4’ in the sequence. The catalytic

efficiency was measured as the turnover number (kcat) for the cleavage of the substrate. In contrast

to the two datasets presented above, the number of data points in this case was only 199.

Descriptors

Chemical compounds were described by Scitegic circular fingerprints (ECFP 6 type),[21, 42] calcu-

lated in PipelinePilot 8.5.0.200.[43] For the calculation of keyed ECFP 6 fingerprints, each compound

substructure, with a maximal diameter of three bonds, is treated as a compound feature. The sub-

structures are then mapped into an unhashed array of counts, thus enabling the estimation of

their contribution to bioactivity (see Results and Discussion). The efficiency of these fingerprints

to identify chemical features relevant for bioactivity has been previously demonstrated.[16, 44]

Pairwise compound similarity plots were calculated in R using the vegan package.[45] Protein

amino acids of the GPCRs and adenosine receptors binding sites, as well as the Dengue virus NS3

proteases substrates, were described with five amino acid extended principal property scales (5

z-scales). The property calculation was conducted in R[46] via in-house scripts following the work

of Sandberg et al.[47] In the GPCRs dataset a descriptor accounting for the amino acids side chain

charge at pH 7.4 was also added (with values of: +1 if the charge is positive, -1 if negative and 0

for neutral amino acid). The four Dengue virus NS3 protease variants were described with binary

descriptors.

Modeling with Bayesian Inference

0.0.1 Gaussian Processes

Given a dataset D = {X, y} where X = {xi}n
i=1 is the set of compound and target descriptors,

and y = {yi}n
i=1 is the vector of observed bioactivities, the aim is to find a Gaussian Process[48],

GP(D), capable to infer the relationships within D, in order to predict the bioactivity y⋆ for new

compound-target combinations x⋆. In the frame of Bayesian inference, GP are defined as:

P(GP(D)|D) ∝ P(y|GP(D), X) P(GP(D)) (1)
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where: (i) P(GP(D)|D) is the posterior probability distribution giving the bioactivity predictions, (ii)

the likelihood P(y|GP(D), X) is the probability of the observations, y, given the training set, X and

the model GP(D), and (iii) P(GP(D)) is the prior probability distribution of the functions GP(D)

candidates to model the dataset D.

The prior probability distribution is updated with the information contained in D via the likelihood,

leading to the definition of the posterior probability distribution as the set of functions efficiently

modeling D. The average of the posterior distribution is considered as the bioactivity prediction

(Figure S1). GP(D) is a random function which functional values follow a centered Gaussian

distribution for any set of datapoints. Thus, the P(GP(D)) values for a finite subset of compound-

target vectors xi, .., xn follow a multidimensional normal distribution with mean µ and covariance

matrix CX:

GP(D) ∼ N (0, CX + σ2
d δ(xj, xk)) (j, k ∈ 1, . . . , n) (2)

where δ(xj, xk) is the Kronecker delta function and σ2
d is the noise of the datapoints (experimental

error), which is assumed to be normally distributed with mean zero. The value of σ2
d accounts for

the noise in the observed bioactivities, y = GP(D) +N (0, σ2
d ) which in turn reflects the trade-off

between the quality and smoothness of the fitting.

CX is obtained by applying a positive definite kernel function (also known as statistic covariance)[49]

to X, CX = Cov(X). Owing to the fact that the covariance function is based upon dot products, the

kernel trick can be applied in a similar way as in SVM.[50] Kernel parameters are called hyperparam-

eters since their values define the probability of each function of the prior probability distribution.

The different kernels implemented in this study are listed in Table S1.

0.0.2 Bioactivity Prediction for New Datapoints

The bioactivity, y⋆, of a new compound-target combination, x⋆, can be predicted from the joint

prior probability distribution P = ( y
y⋆) of y and y⋆, due to the multivariate Gaussian distribution

assumed for D:

[

y

y⋆

]

∼ N

(

0, C⋆ =

[

CX = Cov(X), k = Cov(X, x⋆)

kT , m = Cov(x⋆, x⋆)

])

(3)

where kT is the transpose of the matrix k, which describes the similarity between X and x⋆. The

predicted bioactivity is obtained as the mean value of the probability:

P(y⋆|x⋆, D, y) (4)

and the uncertainty of the prediction corresponds to the standard deviation of this probability

distribution.



Cortes-Ciriano et al. Page 6 of 25

To calculate P(y⋆|x⋆, D, y), the joint probability distribution, P( y
y⋆), is divided by the probability

of the observed bioactivities, P(y). Subsequently, the predicted probability for y⋆ is obtained by

calculating the Schur complement:[51]

P(y⋆) ∼ N(µy⋆ = kTC−1
X y, σ2

y⋆ = m − kTC−1
X k) (5)

where the best estimate for the bioactivity of x⋆ is the average value of y⋆, µy⋆ = 〈P(y⋆)〉, σy⋆ , the

standard deviation, being its uncertainty.

As can be seen in Eq. 5, those compound-target combinations in X similar to x⋆, contribute more to

the prediction of y⋆, as y is weighted by kT . This means that GP, as a kernel method, mainly infers

the value of y⋆ from the most similar compound-target combinations in descriptor space present in

the training set, X.

On the other hand, the predicted variance, σ2
y⋆ , is equal to the difference between the a priori

knowledge about x⋆: m = Cov(x⋆, x⋆), and what can be inferred about x⋆ from similar compound-

target combinations present in X: kTC−1
X k. Thus, in the case of x⋆ being similar to the compound-

target combinations in X, the value of σ2
y⋆ is small. By contrast, a high value of σ2

y⋆ indicates that x⋆

is not similar (is distant) to the compound-target combinations in X. In that case, the GP cannot

learn much about x⋆ from the training set, so the prediction should be consider as less reliable.

Consequently, σ2
y⋆ gives an idea of the applicability domain (AD) of the model and thus serves to

evaluate the uncertainty of the prediction.

Computational Details

0.0.3 Determining the Kernel Hyperparameters

As previously stated (Equation 2), the prior distribution of a GP is mainly defined by its covariance,

CX, which is in turn characterized by its hyperparameter values. For the simplest kernel, Radial

Basis function kernel (RBF), also known as Squared Exponential or simply Radial (Table S1), the

hyperparameters are (Ω = {l, σ2
d}) where l are the length scales, (one per descriptor) and σ2

d the

noise variance. In this case, the covariance between two input vectors can be defined as:

Cov(xi, xj) = e
− 1

2 ∑
P
p=1

(xi
p−x

j
p)

2

l2p (6)

where p is the descriptor index and P the total number of descriptors. Each length scale, l, is treated

as a hyperparameter wich value needs to be optimized during model training. High length scale

values will be assigned to irrelevant features for the model. Therefore, the inverse of the optimized

l value obtained for a given descriptor gives an idea of its importance for the model. This inherent

ability of Bayesian inference to infer the relevance of each descriptor is the so-called Automatic

Relevance Determination (ARD).[48] In the context of PCM, ARD can be exploited to provide a

biologically meaningful interpretation of the models.
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In the frame of Bayesian inference, we search for the hyperparameter values maximizing the proba-

bility of having obtained the observed data. Thus, the hyperparameter values should define a prior

distribution P(GP(D)) maximizing the probability of the functions along the data. The problem

can be rewritten as: the search of hyperparameter values maximizing the posterior probability

distribution over the hyperparameters: P(Ω|D). In a Bayesian line of reasoning, this posterior

probability can be expressed as:

P(Ω|D) ∼ P(y|Ω, X) P(Ω) (7)

where P(y|Ω, X), is the marginal likelihood: P(y|Ω, X) =
∫

P(y|GP(D) P(GP(D)) dGP(D). The

hyperparameter values Ω can thus be determined by maximizing the logarithm of the marginal

likelihood:[48, 52]

ln P(y|Ω, X) = −
1

2
yTC−1y −

1

2
ln |C| −

n

2
ln 2π (8)

Several methods can be implemented to accomplish this multivariate optimization problem, such

as a simplex method, Monte Carlo (MC) Sampling,[53] a genetic algorithm, nested sampling,[54]

forward variable selection[31] or the conjugate gradient method.[48]

In the present study, kernel hyperparameters were optimized by grid search and k-fold cross-

validation (CV) in the case of the adenosine receptors and aminergic GPCRS datasets (section S1

of the Supplementary Materials), because of their large size and high number of descriptors. The

experimental error, σ2
d , (Equation 2) was considered as fixed with a value of 0.29 pKi units, this

value being taken from the work of Kramer et al.[22] The same length scale value, l, was used for all

descriptors to simplify the hyperparameter optimization.

The dengue virus dataset, due to its small size, and to the lack of information concerning the experi-

mental uncertainty, the noise variance, σ2
d , was optimized by conjugate gradient as implemented

in the GPML toolbox.[55] As the number of descriptors is only 24, we optimized the length scales

using the radial kernel. In the frame of Automatic Relevance Determination (ARD), the importance

of each descriptor for the model was estimated using the inverse of the optimized l values, in the

way described above.

0.0.4 GP Tolerance to Noise

To better understand the influence of the experimental error in GP modeling, we trained 15 models

for each dataset with increasing levels of noise with both the radial and the normalized polynomial

(NP) kernel, thus leading to a total number of 90 models. Their predictive ability was monitored on

the external set. The levels of added noise (noise variance) ranged from 0 to a maximum value of

10, which corresponds to a noise deviation of 3.2 pKi units for the adenosine receptors and GPCR

datasets, and 3.2 log units for the dengue virus NS3 proteases dataset.
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0.0.5 Machine Learning Analyses and Implementation

Machine learning models were built in R using the caret package.[56] Non-default kernels for GP

were introduced in the caret framework by in-house R scripts and by the definition of custom models

(custom option in the caret package) implementing kernel functions from either the kernlab[57]

package or in-house kernel functions. Source code is available from the authors upon request.

Likewise, The Gaussian Process for Machine Learning (GPML) Toolbox version 3.2[55] was used

to build GP models in Matlab version 7.15[58] to assess the importance of ligand descriptors

(Automatic Relevance Determination). The python package infpy[59] helped to generate Figure S1.

The data pre-processing and the in silico modeling pipeline are described in Supplementary Material,

along with model training and validation.

Assessment of Maximum Model Performance

The Tropsha validation criteria,[27–29] (Equations S7-S10 in Supplementary Information) were

used for accepting or dismissing the model (section Internal validation of Supplementary Material).

Hence, the distributions of maximum RMSEPext, Q2
ext, R2

0 ext, and R2
ext (Equations S3-S6 in Sup-

plementary Information) were calculated for each dataset in the following way. Firstly, a random

sample, A, of a Gaussian distribution with mean and standard deviation equal to those of the

bioactivity distribution was generated. Secondly, the sample B was calculated by adding to A a

random noise with mean zero and standard deviation equal to the experimental error. Then, the

statistical metrics were calculated for A with respect to B. The calculation of statistical metrics on

1,000 generations of random samples A and noisy samples B provided a distribution of statistical

metrics for each dataset. These maximum and minimum values of the distribution were then used

to validate the metrics values obtained when evaluating the bioactivities predicted for the external

sets. If the obtained metrics were beyond the maximum values (for Q2
ext, R2

0 ext, and R2
ext) or the

minimum values (for RMSEPext) of the distribution, the model is likely to be over-optimistic.

The experimental errors required to define the random samples B were determined in the following

way. For adenosine and GPCR datasets, the experimental error of pKi data was considered to be

approximately 0.29 pKi units, which corresponds to the average standard deviation value for public

Ki datasets estimated by Kramer et al.[22] The experimental error of the dengue dataset was inferred

from the data by considering its uncertainty as a hyperparameter of the GP model since we could

not find information about the experimental uncertainty in the study of Prusis et al.[41]

Interpretation of Ligand Substructures

To calculate the influence of a given feature (chemical substructure) to pKi, we iteratively set the

count of the feature equal to zero in all compound descriptors presenting it, in order to virtually

remove the substructure. Bioactivity values were then predicted using the modified compound

descriptors, and the difference between the predicted values in the presence or absence of a given

feature were calculated. The average value of these differences, weighted by the number of counts

of the feature in each compound, corresponds to the contribution of that feature to bioactivity. The
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contribution was estimated for all compound features considered in the model. The sign of the

difference ({+/-}) indicates if the feature is respectively beneficial or deleterious for compound

bioactivity. This approach is closely related to the method proposed by van Westen et al.,[14]

although two modifications have been made: (i) the weighting of the average difference between

predicted and observed bioactivities, and (ii) the calculation of descriptor importance on a per

target basis.

Results
Model Validation

0.0.6 PCM GP Models Agree with the Validation Criteria

Overall, the models obtained for the three datasets with Gaussian Process modeling display statistics

in agreement with our validation criteria (Tables 2 and S3). To ensure that these results were not

the consequence of spurious correlations, we trained GP models with randomized bioactivity

values (y-scrambling).[60] For all datasets, the intercept was negative, thus ensuring the statistical

soundness of our modeling. The best GP model for the adenosine receptors dataset was obtained

with the normalized polynomial (NP) kernel, exhibiting RMSEPext and R2
0 ext values of 0.58 pKi

units and 0.75 respectively. Similarly, in the case of the GPCRs dataset, the NP kernel led to the best

predictive model, with RMSEPext and R2
0 ext values of 0.66 pKi units and 0.72. As these GP models

were trained with a noise deviation of 0.54 pKi units, the subtraction of the experimental uncertainty,

0.54 pKi units, from the RMSEPext gives a residual error arising from the modeling below 0.12 pKi

units. These RMSEPext values correspond to 6.05% and 10.88% of the range of bioactivity values

in the training set for the GPCRs and the adenosine receptors datasets. In the case of the dengue

virus dataset, GP models show better predictive ability than those reported by Prusis et al.,[41] as

Q2
ext value of 0.92 is obtained here (Table S3) for the best GP model based on the Bessel kernel. The

optimization of the noise variance, σ2
d , as an hyperparameter during the training process led to a

value of 0.27 log units, similar to the values of about 0.3 log units reported by Prusis et al.[61] in a

recent study with similar experimental setup.

0.0.7 GP Statistics are within the Limits of the Theoretical Maximum Model Performance

The distributions of maximum R2
ext, R2

0 ext, and Q2
ext and minimum RMSEPext theoretical values,

obtained as described in subsection Assessment of Maximum Model Performance in Materials

and Methods, are given in Figure S2 for the three datasets. The mean value of the distribution

of maximum R2
0 ext values are equal to 0.80, 0.68 and 0.96 for the adenosine, GPCRs, and dengue

virus NS3 proteases datasets, which highlights that the maximum correlation values that can be

gathered when modeling public data are far from the optimal maximum correlation value of one.

This is not surprising given the noise levels in public bioactivity data.[22, 23] The best RMSEPext

and R2
0 ext values (Table 2) obtained with GP are respectively: 0.58 and 0.75 (adenosine receptors),

0.66 and 0.72 (GPCRs), and 0.44 and 0.92 (dengue virus NS3 proteases), which remain in the limits

of these extreme theoretical values (Figure S2), thus supporting the suitability of our modeling
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pipeline to handle data uncertainty. The mean values of the theoretical RMSEP distribution were

close to the experimental uncertainty on bioactivity, for the adenosine receptors and the dengue

virus NS3 proteases datasets, with respective mean RMSEPext values of 0.54 pKi units and 0.27 log

units (Figure S2). However, the mean RMSEPext value increases up to 0.68 pKi units for the GPCRs

dataset owing to its larger size and sparsity.

0.0.8 PCM Outperforms QSAR on the Studied Datasets

A comparison between models trained on only compound descriptors (’Family QSAR’)[62] and

PCM permits to assess whether the use of GP improved the bioactivity modeling, by simultaneously

modeling the target and the chemical spaces within a PCM study.[6] Indeed, radial kerneled Family

QSAR models with ligand descriptors (Table 2) failed to model the data, being the RMSEPext and

R2
0 ext values respectively: 0.96 and 0.31 (adenosine receptors), 0.97 and 0.38 (GPCRs), and 1.13 and

0.48 (dengue virus NS3 proteases).

0.0.9 Strong Mapping Power of the Normalized Polynomial Kernel

Radial and polynomial kernels have been traditionally used in QSAR and PCM modeling,[16, 63]

but the versatility of other kernels for bioactivity modeling has been recently demonstrated.[63–65]

To investigate this point in the frame of GP models, we compared the performance of various

kernels (Bessel, Laplacian, NP, and PUK) with the radial and polynomial kernels.

As described above, in contrast to Huang et al.,[63] we found the normalized polynomial (NP)

kernel to have enough mapping power to model the three datasets (Table 2). Nonetheless, in the

case of the dengue virus NS3 proteases dataset, although NP kernel produces a statistically correct

modeling with RMSEPext and R2
0 ext values of 0.48 and 0.91, it is slightly outperformed by the Bessel

kernel, which displays respective RMSEPext and R2
0 ext values of 0.44 and 0.92 (Table 2).

The PUK kernel[65] exhibited strong mapping power in a previous study of HIV-1 proteases and

histone deacetylases (HDAC) inhibitors,[63, 64] but in the present study we could not obtain

satisfactory models for none of the three datasets. The Laplacian and Bessel kernels allow a proper

mapping of the three datasets with R2
0 ext values within the range 0.60-0.90 (see Table 2 for further

details).

For the adenosine receptors dataset, different statistics values are observed between the internal

and external validation, as the RMSEPext values are larger for the radial kernel (0.68) than for the

polynomial and Bessel kernels (0.63 in both cases). Nonetheless, a different picture is observed for

RMSEPint, as the values for the radial, polynomial and Bessel kernels are 0.69, 0.64 and 0.70 pKi

units. Although RMSEPext and RMSEPint values are similar, the small increase of RMSEPext with

the Bessel kernel might suggest a slight degree of overfitting.[66]

0.0.10 GP and SVM Perform on par

The performance of the GP and SVM models was compared for each dataset using the radial,

the polynomial, and the NP kernels, as the first two are the most widespread kernels within the
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modeling community.[15, 16, 63] Using different seed values, we trained ten different models for

each modeling technique and dataset, resulting in a total of 60 models (Figure 1). To be able to

statistically test the difference between the models results, distributions of the RMSEPext and R2
0 ext

were generated for each kernel / dataset combination. Both RMSEPext and R2
0 ext statistics were

normally distributed in all cases (Shapiro-Wilk normality test, α 0.05), and a two-tailed t-test of

independent samples (α 0.05) was applied to compare the behavior of SVM and GP. As it can be

seen in Figure 1 and from the result of the t-test, both SVM and GP perform on par in the three case

studies for radial and NP kernels. Similar results (data not shown) were obtained for the polynomial

kernel.

To probe the linearity of the datasets, we trained linear PLS models. For two datasets, PLS appears

unable to infer the complex (non-linear) relationships within the data, leading to RMSEPext and

R2
0 ext of 1.00 and 0.30 for the adenosine receptors, and 1.05 and 0.27 for the GPCRs datasets,

respectively (Table 2). At contrary, the dengue NS3 proteases dataset presents a clearly linear

relationship, with RMSEPext and R2
0 ext values of the PLS model of 0.49 and 0.91. But, on the same

dataset, the model obtained with a linear kerneled GP model outperformed PLS, with respective

RMSEPext and R2
0 ext values of 0.48 and 0.91.

0.0.11 Noise Influence on GP Depends on the Kernel

RMSEPext and R2
0 ext were calculated for adenosine receptors, GPCRs, and dengue virus NS3 pro-

teases for different levels of noise σ2
d added to the diagonal of the covariance matrix CX (Equation 2).

The results obtained for radial kernels (Figure 2, upper plots) appear more sensitive to the noise than

the ones obtained for NP kernels (Figure 2, bottom plots), for which the variations of the RMSEPext

and R2
0 ext sets are lower than 0.10 pKi or log units. This trend is the most obvious for the dengue

virus NS3 proteases dataset, probably originating from the small size of this dataset. The polynomial

kernel (data not shown) displays robustness similar to those of NP kernel. These analyses suggest

that NP or polynomial kernels would constitute a reasonable choice when modeling noisy data. To

summarize, GP models perform on par with SVM and outperform Family QSAR and PLS on the

three datasets. The NP kernel leads to the best GP models being also the most tolerant kernel to

noisy bioactivities. GP models trained on the dengue virus NS3 proteases systematically display

better metrics than the other datasets, likely due to the high matrix completeness (88.84%) of this

dataset (Table 1).

Predicted Confidence Intervals Follow the Cumulative Density Function of the Gaussian Distribution

0.0.12 GP predictions Mostly Follow the Cumulative Gaussian Distribution

To analyze the reliability of the error bars obtained with GP with the tested kernels, different

intervals of confidence (IC) for each predicted bioactivity value on the external set were defined,

namely: 68%, 80%, 95%, and 99%. Subsequently, the percentage of compound-target combinations

for which the experimental bioactivity value lied within the bounds of each interval was calculated.

Following the cumulative density function of the Gaussian distribution (cumulative Gaussian

distribution),[33] the percentage of satisfactory cases should be proportional to the interval size.
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To test this hypothesis, the percentages of predicted bioactivities for which the experimental values

were within the confidence intervals were compared to the size of these intervals (Figure 3). As

the small size of the dengue virus NS3 proteases did not allow a good sampling of the Gaussian

distribution, this dataset was not included in the comparison. This analysis was thus performed for

the adenosine receptors and GPRCs datasets with the Bessel, Laplacian, NP, PUK, and radial kernels.

It is noteworthy that the predicted variance obtained with the polynomial kernel is much larger

than the range of bioactivity values, thus making impossible to evaluate their concordance with the

cumulative distribution. However, the NP kernel allows to obtain values within the interval {0, 1}

for the predicted variance thanks to its normalized formulation.

The experimental values for the radial kernel match the theoretically expected behavior, represented

on Figure 3 by bullet points connected by a blue line, and calculated in the context of a Gaussian

cumulative function. The match between experiment and theory holds for the PUK and NP kernels

for both datasets. The difference between the cumulative Gaussian distribution and the different

intervals of confidence calculated for the Adenosine receptors dataset is around 10% for the other

kernels (Figure 3, left plot). By contrast the Bessel and Laplacian kernels do not provide informative

intervals of confidence for the GPCRs dataset (Figure 3, right plot).

0.0.13 GP Determine the Applicability Domain of the Model

The variance predicted with GP models, σ2
y⋆ , quantifies how much information the model can

infer from the data (Eq. 5). Therefore, we hypothesized that: the distribution of the differences

between the predicted and the observed bioactivity values, are more dispersed for compound-target

pairs distant from the training set (high values of σ2
y⋆ ). To verify this hypothesis, we binned the

external set into four groups depending on the value of the predicted variance: {0.25, 0.5, 0.75, 1}.

The differences between true and predicted bioactivities were compared (Figure 4) to the bioactivity

errors predicted in the GP model. This analysis was done on the adenosine receptors and GPCR

datasets for the predicted variances obtained with the NP and the radial kernels. As the dispersion

of the distribution of the differences increases with the errors predicted by GP, irrespective of

the kernel or dataset considered, this error can be thus considered as a reliable estimate of the

applicability domain (AD).

Interestingly, while the average differences between predicted and observed bioactivities are close

to zero for the subsets of GP errors of 0.25, 0.5, and 0.75, this average value is biased towards

few tenths of a pKi unit (Figure 4) for the subset displaying the largest GP error. This observation

indicates that errors on bioactivities are underestimated by the GP model for compound-target

pairs distant from the training set. GP models with the NP and radial kernels provide prediction

errors in agreement with the cumulative Gaussian distribution, which is the maximum theoretical

precision attainable. Furthermore, the applicability domain of GP models can be determined from

the errors predicted by GP.
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Analysis of GP performance per Target

To further understand the predictive capability of GP models on each analyzed target, we trained

ten GP models with the NP kernel. Different seed values were used for the generation of the training

and the external sets. Once the GP predictions have been obtained, we divided the external set into

subsets grouped by target, and calculated average R2
0 ext and RMSEPext values on these subsets.

This analysis per target was conducted only on the datasets of adenosine receptors and GPCRs,

because of their large sizes and numbers of involved targets.

0.0.14 Adenosine Receptors

The highest mean RMSEPext value is between 0.70 and 0.75 pKi units, and the lowest mean R2
0 ext

value is 0.62 (Figure 5). In this dataset, the performance is not directly related to the number of

compounds annotated per target. Indeed, the best result is obtained on the rat A2b receptor (AA2BR

RAT, 803 compounds) whereas one of the worst results is displayed by the human A1 receptor

(AA1R HUMAN, 1635 compounds).

On the other hand, the results cannot be related to the chemical diversity of the compounds,

analyzed with pairwise Tanimoto similarity (Figure S3). Indeed, the two targets displaying the

largest variability in the range of 0.50-0.75 Tanimoto similarity are rat A3 (AA3R RAT) and human

A2b (AA2BR HUMAN), for which quite different performances are observed (RMSEPext in the

0.70-0.75 range and in the 0.59-0.61 range respectively: Figure 5). Similarly, human A1 (AA1R

HUMAN) and A2a (AA2AR HUMAN) receptors, display the smallest variability for compounds,

and show quite different levels of performance (R2
0 ext in the 0.56-0.60 range and in the 0.70-0.74

range respectively).

The lack of connection between the performance and the chemical diversity could arise from the

binding site residue selection, which might not be equally suited for all adenosine receptors. This

is supported by two other facts, namely: (i) the differences in extracellular loop length that are

known for the adenosine receptor paralogues; and (ii) secondly the knowledge that these loops are

important for ligand binding.[67–69]

0.0.15 GPCRs

In the GPCR dataset, the best RMSEPext (Figure S4) and R2
0 ext (Figure S5) values are obtained

on target subsets with a number of annotated compounds larger than 200 (in grey in Figures S4

and S5). Between the subsets, no major differences in performance are observed for an amount

of annotated compounds between several hundreds and over 1500. It is however noticeable that

the predictive ability of the models increased as the target space included in the training dataset

broadened. Indeed, a bioactivity selection previously done including information from 26 human

aminergic GPCRs (4,951 datapoints), marked with an asterisk in Table S2, did not produce any

sound statistical metrics, as R2
0 ext values lower than 0.40 were obtained whatever the kernel or

machine learning algorithm used. But, the addition to the first selection of the bioactivities measured

on mammal orthologues improved the prediction, although some of the additional bioactivity sets

were singletons (Table S2).
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A large diversity of performance with RMSEPext values in the range of 0.00-2.50 pKi units is ob-

served for the targets annotated with one compound (Figure S4). A relationship can be nevertheless

established between these performances and the number of annotated compounds on orthologues

proteins. For example, the 5-HT2C mouse receptor (5HT2C MOUSE) annotated with three com-

pounds exhibits a mean RMSEPext value between 0.00 and 0.20 pKi units (Figure S4), because 345

and 558 compounds are respectively annotated on the orthologue rat and human 5-HT2C receptors.

The good performance obtained for this mouse receptor is probably due to the similarity of the

345 and 558 compounds to the ones annotated to the 5-HT2C mouse receptor. The importance of

various targets for GP prediction was assessed for the adenosine receptors and GPCRs datasets. To

obtain statistically validated models, a balance has to be found between two trends: (i) the inclusion

of bioactivity information from orthologues improves the predictive ability of the models for both

datasets, but (ii) an increase of the chemical diversity might hamper the acquisition of sound models

as shown for the adenosine receptors dataset.

Model Interpretation of Ligand Descriptors

0.0.16 Compounds Bioactivity Depends on Multiple Weak Contributions of Chemical Substructures

The influence of the substructures on compound bioactivities, for both the adenosine receptors

and the GPCRs, was analyzed as described in section Interpretation of ligand substructures. In the

present study, the contribution of more than 90% of substructures to the pKi values is close to zero

(black regions in Figure S6). We observed similarly (data not shown) that chemical substructures

contributing in a very variable way to the pKi values (average contribution equal to zero and

standard deviations in the range of 0.50 - 1.00 pKi units), are present in sets of compounds displaying

large variability in experimental bioactivity on a given target.

Hence, more than 90% of the substructures from the datasets analyzed here, display alternatively

the following properties: (i) they are not implicated in compound bioactivity as their presence

or absence does not influence compounds bioactivity, (ii) their contribution to the pKi values, is

conditioned to the presence or absence of other substructures.[70] The highest contributions to

the pKi values, on both the GPCRs and the adenosine receptors datasets, is close to 1 pKi units

(Figure S6), in the range similar to those obtained by van Westen et al.[15] Therefore, even those few

substructures with a large contribution, highlighted in Figure S6, do not explain a large proportion

of the bioactivity.

0.0.17 ARD Provides a Biologically Meaningful Interpretation of PCM Models

The substrates in the dengue virus NS3 proteases dataset are tetra-peptides. The relative importance

of the four residues of these tetra-peptides was deconvoluted in the frame of ARD, described in

Materials and Methods, by taking the inverse of the optimized l value of the radial kernel (Figure 6).

The largest inverse values are obtained for P1’ followed by P2’, P3’ and P4’ displaying similar

values. Thus, the first amino acid (P1’) is the most relevant for the model followed by the second

one (P2’), in contrast to the third and fourth ones (P3’ and P4’). In the study of Prusis et al.,[41] the
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PLS coefficients with the highest values correspond to the first and second amino acids, as it is also

the case here. A further detailed comparison of the PLS and the presented GP model is beyond the

scope of this study. However, it should be noticed that the descriptors used in the present study

and in Ref.[41] differ: 5 z-scales in our case versus 3 z-scales, C7.4, t1-Rig, and t2-Flex[71] in the PLS

model. Although the PLS and GP models might assign different weights to the different descriptors,

they both identify the first amino acid position as having the largest influence on Kcat, in agreement

with experimental results.[41] GP models were interpreted on the basis of ligand descriptors. For

datasets where ligands are compound descriptors (GPCRs and adenosine receptors datasets), the

interpretation was not conclusive. By contrast, the interpretation of GP models according to the

amino acids of the tetra-peptide ligands in the dengue datasets gave biologically meaningful results,

in agreement with the scientific literature.[41] In that way, ARD can be applied to biologically

interpret systems: e.g. identify residues responsible for compound binding. Additionally, ARD with

the radial kernel can model non-linear relationships, which is not possible with PLS without the

introduction of (not easily interpretable) cross-terms.[6, 41]

Discussion
In the present study, we have demonstrated that Gaussian Processes (GP) allow to predict com-

pound bioactivities on biomolecular targets. The statistically soundness of GP models is observed

for a broad panel of kernels, among which the NP and radial kernels display the best results. GP

and SVM display statistically similar performance for the modeling of multispecies proteochemo-

metric datasets of different sizes. Moreover, Family QSAR and PCM models were trained on the

same number of datapoints and PCM produce much better results than Family QSAR, due to the

introduction of target descriptors.

GP were applied on the following datasets: two large datasets involving GPCRs and adenosine

receptors and one small dataset (199 datapoints) comprising four dengue NS3 proteases. The

dengue dataset exhibits a high degree of linearity, as demonstrated by the high performance of

both PLS and GP with a linear kernel on this dataset. Unsurprisingly, a better performance of GP is

observed with different kernels for the dengue dataset than for the two other ones, due to the high

matrix completeness in the dengue dataset and to its linearity. The satisfactory results obtained

for the dengue dataset encourages the application of GP to model relatively small datasets issued

from a single laboratory. The use of such in-house datasets would reduce the bias introduced by the

annotation errors and by the use of non-normalized experimental conditions.

The inclusion of chemical and target information from several organisms (orthologues) increases

model performance and the applicability of models to predict bioactivity for new compound

target-combinations. These observations are in favor for the routine inclusion of multispecies

bioactivity information in PCM settings. These results disagree with Gao et al.[72], who stated that

the addition of orthologues to human aminergic GPCRs would reduce the AD. Our understanding

of the results obtained here is that the incorporation of bioactivity data from a wide range of

species led to a significant increase of models performance given that binding patterns tend to
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be conserved among orthologues.[73] We have seen on the GPCR dataset, that the inclusion of

singletons compounds bioactivities on human orthologues helps to increase models performance.

This may be of tremendous relevance in the often encountered cases where limited bioactivity

information is known on a given human target, but a much larger number of bioactivities have

been measured on orthologues of this target.[16, 73, 74] Our results suggest that the chemical

diversity considered and the number of datapoints have to be balanced to obtain sound models

while exhibiting proper predictive abilities. An additional outcome of GP with respect to SVM is

the estimation of the uncertainty of predictions. Indeed, the Bayesian formulation of GP permits to

obtain intervals of confidence for individual predictions defined from the GP predicted variance.

These intervals were shown to be in agreement with the cumulative Gaussian distribution when

using the radial and NP kernels, but not always for the Bessel or Laplacian kernels, highlighting

that the kernel choice has to be made in the light of both models performance and reliability of the

predicted variances. We have also shown here that GP using as covariance function the polynomial

or the NP kernel can handle noisy datasets, as the GP performance is only slightly affected when

noise is introduced in the data. Nonetheless, each kernel should be chosen in the light of underlying

structure of the dataset, as the kernel controls the prior distribution over functions, and thus the

models generalization properties.[48, 75] It is noteworthy to mention that we have implemented a

broad, though not exhaustive, panel of kernels, which is susceptible to be further completed with

other base kernels or kernel combinations (composite kernels).[48, 75, 76]

GP can consider individual experimental errors as input for the probabilistic model which may

constitute a preeminent advantage when gathering information from diverse sources, each of which

including distinct levels of experimental uncertainty.[33] In the present study, an approximation of

the experimental uncertainty of heterogeneous pKi values, recently reported by Kramer et al.[22] to

exhibit a standard deviation of 0.54 pKi units, has been introduced in the model. Nonetheless, GP

allow the inclusion of the uncertainty of each individual datapoint into the model, which might

lead to a more accurate modeling pipeline in cases where the experimental uncertainty of each

datapoint is available.

Traditionally, the application of GP to model large datasets has been limited since the inversion of

the covariance matrix scales with the cube of its dimension, i.e. GP is an algorithm of complexity

O(N3).[31, 48] In the present study, we have not reported training times since models have been

trained with GP implementations coded in different programming languages (subsection Machine

Learning Analyses and Implementation). In the experience of the authors, the application of ARD

is limited by the size of the datasets, being not applicable in practice to datasets with more than

several thousands of datapoints, or with more than several hundreds of descriptors. Nevertheless,

new GP implementations have proved to seemingly decrease calculation times,[77–79] which might

increase the applicability of GP to large PCM datasets in the future.

Overall, we have shown here that GP simultaneously provides bioactivity predictions and assess-

ment of their reliability. The application of GP to PCM datasets, gives the insight that GP could also

be very useful in the drug discovery for personalized medicine, when the target space includes
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several mutants of a given target.[15, 80] In the same way, GP could even be used in the context of

decision making in clinics.[81]

Conclusion
Gaussian Processes (GP) have been proposed and tested for the prediction of bioactivity mea-

surements, and found to perform at the same level of statistical significance as Support Vector

Machines (SVM). In addition, GP is the only method, up to now, to give predictions as probability

distributions, thus permitting the estimation of errors on the bioactivity predictions as well as

an estimation of the applicability domain. Moreover, GP are tolerant to noisy bioactivities. GP

models trained on PCM datasets can also be used to analyze the effect of ligand features (compound

substructures or peptide residues).
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Figures

Figure 1: Comparison between the performance of GP and SVM with either the radial or the

normalized polynomial (NP) kernel. Ten models were calculated for each dataset and for each

combination of modeling technique and kernel, thus resulting in a total of 60 models. The perfor-

mance of GP and SVM was assessed by kernel for the three datasets. Given that the distributions of

RMSEPext and R2
0 ext values were normally distributed, a two-tailed t-test of independent samples

was applied to statistically evaluate their differences. These analyses let us conclude that SVM and

GP perform on par for the modeling of the three datasets considered in this study.

Figure 2: Noise influence in model performance. RMSEPext (red) and R2
0 ext (black) values ob-

tained when increasing the noise level (noise variance added to the diagonal of the covariance

matrix) were calculated for: adenosine receptors (left figure), GPCRs (medium figure) and dengue

virus NS3 proteases (right figure). Upper plots correspond to GP models calculated with the radial

kernel while the bottom plots refer to GP models with the Normalized Polynomial (NP) kernel. In

all cases, the radial kernel appears more sensitive to noise, while the NP kernel performs equally

well when noise is added to the data. These data suggest that the NP kernel is more appropriate for

the modeling of noisy PCM datasets.

Figure 3: Analysis of the confidence intervals predicted on (left) the adenosine receptors and

(right) aminergic GPCRs external sets. The percentage of annotated values lying within the in-

tervals of confidence of 68%, 80%, 95%, and 99% (ordinate axis) are depicted versus the size of

the intervals. The blue line defines the theoretical proportionality between the size of confidence

intervals and the number of points within the intervals, in the frame of the Gaussian cumulative

function. The radial, PUK, and Normalized Polynomial (NP) kernels are in close conformity with the

cumulative Gaussian distribution in both datasets, while the Laplacian and Bessel exhibit a diverse

behavior depending on the dataset. Therefore, GP provide prediction errors in agreement with the

Cumulative Gaussian distribution which can be reliably used to define intervals of confidence for

the predictions.
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Figure 4: GP determine models applicability domain. The differences between the true and pre-

dicted bioactivities (y axis) and the errors on predictions estimated by the GP model (x axis) are

compared for the adenosine receptor dataset with radial (A) and NP (B) kernel, and for the GPCRs

dataset with radial (C) and NP (D) kernels. The distribution of the differences between true and

predicted bioactivities increases with the GP error on the prediction. This validates the GP error is a

measurement of the Applicability Domain (AD) of the model.

Figure 5: Model performance per target on the external set for the adenosine receptors dataset.

The upper panel corresponds to R2
0 ext, while the lower panel to RMSEPext. These values were

averaged for ten models trained on each subset corresponding to a given target. The best modeled

target is the rat adenosine A2b receptor (AA2BR RAT), while the worst is the rat A3 receptor (AA3R

RAT). In all cases, the mean RMSEPext values are below 0.75 pKi units, indicating that GP modeling

can predict compound bioactivity on subsets corresponding to a given target.

Figure 6: Descriptor importance for the Dengue virus NS3 proteases dataset. Descriptor impor-

tance is calculated in the frame of Bayesian Automatic Relevance Determination (ARD) as the

inverse of the value of the length scale of each descriptor. The descriptors of the first and second

residues of the tetra-peptides (positions P1’ and P2’) are the most relevant for the model. This is in

agreement with the higher influence of these two substrate positions for the cleavage rates of the

proteases.
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Tables

Adenosine Receptors
Dengue Virus NS3

Proteases
Aminergic GPCRs

Datapoints 10,999 199 24,593

Sequences 8 4 91

Ligands 4419 56 11,121

Source Organisms
H. sapiens and Rattus

norvegicus
Dengue virus

H. sapiens, Rattus

norvegicus, Mus

musculus, Bos taurus,

Sus scrofa, Canis

familiaris, Cavia

porcellus, Chlorocebus

aethiops, and

Mesocricetus auratus

Bioactivity pKi Kcat pKi

Matrix Completeness

(%)
31.11 88.84 2.43

Table 1: Overview of the proteochemometric datasets modeled in this work. Whereas the com-

pleteness of the compound-target interaction matrix of the dengue virus NS3 proteases dataset

is almost complete (88.84%), the adenosine receptors and GPCRs dataset are more challenging to

model given: (i) their sparsity (31.11 and 2.43% of matrix completness respectively), and (ii) the

consideration of information from human orthologues, being the respective number of different

sequences 8 and 91.
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Table 2: Internal and external validation metrics for the PCM models.

Adenosine Receptors Dataset

R2
int RMSEPint R2

0 ext RMSEPext

GP Bessel 0.64 0.70 0.70 0.63

GP Laplacian 0.67 0.68 0.67 0.66

GP Norm. Polynomial (NP) 0.69 0.65 0.75 0.58

GP Polynomial 0.70 0.64 0.70 0.63

GP PUK 0.57 0.79 0.56 0.77

GP Radial 0.65 0.69 0.65 0.68

PLS 0.29 0.97 0.30 1.00

SVM Norm. Polynomial (NP) 0.70 0.64 0.73 0.60

SVM Polynomial 0.71 0.63 0.71 0.62

SVM Radial 0.68 0.65 0.70 0.64

QSAR 0.31 0.70 0.31 0.96

Aminergic GPCRs Dataset

R2
int RMSEPint R2

0 ext RMSEPext

GP Bessel 0.56 0.83 0.56 0.80

GP Laplacian 0.62 0.78 0.63 0.75

GP Norm. Polynomial (NP) 0.69 0.68 0.72 0.66

GP Polynomial 0.68 0.71 0.70 0.68

GP PUK 0.46 0.93 0.46 0.90

GP Radial 0.69 0.69 0.71 0.66

PLS 0.69 0.69 0.27 1.05

SVM Norm. Polynomial (NP) 0.69 0.68 0.72 0.66

SVM Polynomial 0.69 0.69 0.71 0.66

SVM Radial 0.69 0.69 0.72 0.66

QSAR 0.38 0.98 0.38 0.97



Cortes-Ciriano et al. Page 25 of 25

Dengue virus NS3 proteases Dataset

R2
int RMSEPint R2

0 ext RMSEPext

GP Bessel 0.91 0.43 0.92 0.44

GP Laplacian 0.88 0.54 0.91 0.50

GP Linear 0.91 0.45 0.91 0.48

GP Norm. Polynomial (NP) 0.88 0.50 0.91 0.48

GP Polynomial 0.91 0.42 0.92 0.44

GP PUK 0.77 1.10 0.81 1.13

GP Radial 0.91 0.45 0.91 0.45

PLS 0.90 0.45 0.91 0.49

SVM Norm. Polynomial (NP) 0.86 0.54 0.91 0.46

SVM Polynomial 0.89 0.46 0.90 0.51

SVM Radial 0.90 0.48 0.90 0.48

QSAR 0.29 1.19 0.48 1.13

Table 2: For the three datasets, the best models are obtained with GP, being the lowest RMSEPext

and highest R2
0 ext values: (i) adenosine receptors: 0.58 and 0.75 with NP kernel, (ii) GPCRs: 0.66

and 0.72 with NP kernel, and (iii) Dengue virus NS3 proteases 0.44 and 0.92 with Bessel kernel.

Overall, GP models for the three datasets agree with the validation criteria.

Abbreviations. RMSEP: root mean square error in prediction; Ext.: external; Norm: Normalized.

Additional Files

Additional file 1 — Supplementary information

This file contains (i) the modeling pipeline used in this study, (ii) supplementary figures, and (iii)

supplementary tables.
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