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Abstract

Background: Translational exploration of bacterial toxins has come to the forefront of research given their
potential as a chemotherapeutic tool. Studies in select tissues have demonstrated that Clostridium perfringens iota
toxin binds to CD44 and lipolysis stimulated lipoprotein receptor (LSR) cell-surface proteins. We recently
demonstrated that LSR expression correlates with estrogen receptor positive breast cancers and that LSR signaling
directs aggressive, tumor-initiating cell behaviors. Herein, we identify the mechanisms of iota toxin cytotoxicity in a
tissue-specific, breast cancer model with the ultimate goal of laying the foundation for using iota toxin as a targeted
breast cancer therapy.

Methods: /n vitro model systems were used to determine the cytotoxic effect of iota toxin on breast cancer
intrinsic subtypes. The use of overexpression and knockdown technologies confirmed the roles of LSR and CD44 in
regulating iota toxin endocytosis and induction of cell death. Lastly, cytotoxicity assays were used to demonstrate
the effect of iota toxin on a validated set of tamoxifen resistant breast cancer cell lines.

Results: Treatment of 14 breast cancer cell lines revealed that LSR+/CD44- lines were highly sensitive, LSR+/CD44+
lines were slightly sensitive, and LSR-/CD44+ lines were resistant to iota cytotoxicity. Reduction in LSR expression
resulted in a significant decrease in toxin sensitivity; however, overexpression of CD44 conveyed toxin resistance.
CD44 overexpression was correlated with decreased toxin-stimulated lysosome formation and decreased cytosolic
levels of iota toxin. These findings indicated that expression of CD44 drives iota toxin resistance through inhibition
of endocytosis in breast cancer cells, a role not previously defined for CD44. Moreover, tamoxifen-resistant breast
cancer cells exhibited robust expression of LSR and were highly sensitive to iota-induced cytotoxicity.

Conclusions: Collectively, these data are the first to show that iota toxin has the potential to be an effective,
targeted therapy for breast cancer.
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Background

Breast cancer is a heterogeneous disease that varies in
etiology, pathophysiology and response to therapy. As a
result, patients with disease of similar stage and grade
often respond differently to therapy leading to disparate
clinical outcomes. Molecular profiles characterizing the
various intrinsic breast cancer subtypes, as per gene ex-
pression signatures, have been successful for predicting
overall survival, relapse, and response to chemotherapy
[1-4]. Luminal subtypes are defined by expression of estro-
gen receptor a (ERa) and cell cytokeratins (CKs) 8 and 18
[5,6]. Basal-like tumors are typically triple-negative (i.e.
lacking expression of ERa, progesterone receptor, and
human epidermal growth factor receptor 2 (HER2)), yet
express basal CKs 5, 14, and/or 17 [5,7,8]. The claudin-
low subtype is characterized by low gene expression of
junction and adhesion proteins that include claudins 3,
4 and 7, as well as E-cadherin [3]. While these tumors
initially respond to chemotherapy, there is a high risk of
recurrence and disease progression, consequently leading
to poor patient survival [9-11].

Abnormal protein regulation of cell-surface receptors
promotes cancer development/progression, and is widely
used to determine patient prognosis and dictate thera-
peutic regime. CD44 and lipolysis stimulated lipoprotein
receptor (LSR) are both cell-surface, transmembrane pro-
teins that mediate cellular responses towards their micro-
environment. These molecules participate in cell-cell and
cell-matrix interactions, as well as regulate cell growth, sur-
vival, differentiation, and motility [12-14]. High CD44 levels
are a marker for tumor initiating and chemotherapeutic-
resistant cells in many cancers, including breast [15,16].
High CD44-expressing cells have heightened tumorigen-
icity, self-renewal in vivo, and give rise to functional as
well as molecular heterogeneity: properties directly linked
to chemotherapeutic-resistant, aggressive cancers [15]. It
has also been reported that basal-like tumors contain the
highest percentage of CD44-positive cells [17], while high
CD44 expression correlates to a basal-like phenotype, in-
creased metastases, and unfavorable prognosis in breast
cancer patients [18-20]. Similar to high CD44 levels, in-
creased expression of LSR has been associated with altered
gene expression of pathways involved in transformation
and tumorigenesis, enhanced proliferation, survival in an-
chorage independent conditions and promotion of collect-
ive cell migration in breast cancer cells [21]. High LSR
levels have also been identified as a marker for tumor-
initiating and chemotherapeutic-resistant cells [14]. Collect-
ively, these studies highlight a direct role for LSR in driving
aggressive breast cancer behavior.

The use of bacterial toxins for selective and efficient
cancer therapeutics has been gaining attention due to re-
cent successes in vitro and in vivo [22,23]. Bacterial
toxins possess efficient cytotoxic capabilities, making
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them suitable candidates for gene therapeutic applications
towards various cancers [24-31]. Clostridium perfringens
iota toxin has various properties that make it a potential
candidate for targeted cancer therapy. For instance, like
many of the “classic” AB exotoxins, iota toxin is secreted
by the bacterium and contains two functionally distinct,
subunits not linked in solution [32]. The B subunit (Ib)
binds to a cell-surface receptor, facilitating docking and
uptake of the enzymatic A subunit (Ia) through receptor-
mediated endocytosis. Ib forms heptamers on the cell
surface and creates pores within an acidified endosome
membrane enabling release of Ia into the cytosol. The Ia
molecule mono-ADP-ribosylates G actin, subsequently
preventing F actin assembly that leads to overt rounding
of cells and death [32-34].

Recent studies have implicated LSR and CD44 as
functional receptors, or co-receptors, mediating iota
toxin binding to host cells [35,36]. However, the rela-
tionship between these cell-surface proteins with re-
spect to promotion of iota cytotoxicity is still unclear,
given the various model systems used during these in-
vestigations. In the present study, we investigated the
role of LSR and CD44 in a tissue-specific manner by
identifying which protein mediates the cytotoxic pro-
cesses specific to breast cancer. Ultimately, our future
goal is to evaluate the potential of using iota toxin as an
adjuvant, targeted therapy for breast cancers that may
be less toxic than current available treatments.

Results

Relationship of LSR and CD44 expression levels in breast
cancer subtypes to iota toxin sensitivity

From the perspective of a protein-based treatment tool, C.
perfringens iota toxin is relatively unexplored yet possesses
promising potential for targeting breast cancer, as recent
evidence now implicates LSR and CD44 as functional
facilitators of iota cytotoxicity [35,36]. Thus, identifying
the precise mechanisms of interaction between iota
toxin with LSR and CD44 is a necessary step towards
developing targeted therapies for breast cancer. Previ-
ous cancer studies have shown that LSR is positively
correlated with ERa expression, tumor initiating cells,
and chemoresistance [14,21]. Others have shown that
high CD44 expression correlates to a basal-like pheno-
type and unfavorable prognosis in breast cancer patients
[17-19]. Given this, we first assessed LSR and CD44 ex-
pression in a panel of well-characterized breast cancer
cell lines. LSR was detectable in the majority of luminal
and basal-like subtypes, while the claudin-low lines had
little to no expression of LSR (Figure 1A,B). Conversely,
CD44 expression was readily detectable in claudin-low
lines while basal-like and luminal lines had little to below
detectable expression levels via western blot analysis.
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Figure 1 Breast cancer cells expressing LSR are sensitive to iota toxin. (A) Representative breast cancer cell lines were grown to 80%
confluence, lysates isolated, and then analyzed via western blot using LSR and CD44 specific antibodies; a-tubulin was used as a loading control.
Representative western blot and (B) corresponding intensity measured via ImageJ. Data represent mean relative intensity +/— SE. Cells were
treated with la or la+ Ib for 8 h in the absence (C) and presence (D) of 0.8 mM oleic acid in normal growth media for 20 min at 37°C prior to
treatment. Representative images demonstrate cell rounding and detachment from tissue culture dish, indicative of cell death. (E) Cells were
treated with la or la+ Ib in complete growth medium at 37°C and cell death was quantified at the indicated times via fluorescent cytotoxicity
assay. *P < 0.01. A minimum of three independent experiments was performed for each analysis. RFU; relative fluorescent units.
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To further understand the role LSR and CD44 play in
breast cancer susceptibility to iota toxin, we evaluated the
effects of toxin exposure over time. Cells were treated with
control (Ia only) or with varying concentrations of Ia and
Ib as indicated (Figure 1C), under normal growth condi-
tions. Toxin sensitivity, easily observed by robust cell
rounding and altered morphology, was documented at 0,
1, 2, 4, 6, and 8 h post treatment. Results show that
LSR+/CD44- lines were highly sensitive, LSR+/CD44+
lines were moderately sensitive, and LSR-/CD44+ lines
were interestingly resistant to the cytotoxic effects of
iota toxin in both a time and dose-dependent manner
(Figure 1C; Table 1; cell rounding quantified in Additional
file 1: Figure S1A). Furthermore, in fibroblasts and hepa-
tocytes, binding of LSR to free fatty acids induces a
conformational change that mediates binding of apo-
proteins B- and E-containing lipoproteins, leading to

their subsequent internalization and degradation [37-39].
Thus, to further verify that iota toxin sensitivity is conveyed
through LSR, we treated two LSR + cell lines moderately
sensitive to iota toxin with oleic acid. Iota cytotoxicity was
enhanced by oleic acid (Figure 1D; Table 2; cell rounding
quantified in Additional file 1: Figure S1A).

To confirm the observed cell death, cytotoxicity assays
were performed on highly sensitive, LSR+/CD44- MCEF-7
and resistant LSR-/CD44+ Hs578t cells when treated with
low and high concentrations of iota toxin (Figure 1E).
Results indicated that highly sensitive MCF-7 cells had
a significant increase in cytotoxicity in a time- and
dose- dependent manner when challenged with iota
toxin (P < 0.01). However, resistant Hs578t cells did not
have significant changes in cytotoxicity compared to
controls treated with Ia only (Figure 1E). No significant
alteration in expression or activation (via cleavage) of
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Table 1 lota toxin sensitivity in a breast cancer cell line panel
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Cell line la (10 ng/ml) la (10 ng/ml) + la (25 ng/ml) + la (50 ng/ml) + la (100 ng/ml) +
Ib (20 ng/ml) Ib (50 ng/ml) Ib (100 ng/ml) Ib (200 ng/ml)
MCF-7 - + + ++ ++
Luminal T47D - + + + ++
ZR-75-1 - + + ++ ++
HCC1937 - ++ ++ ++ ++
MDA-MB-468 - + + ++ ++
Basal-like 2UMT49 ) ) ) ! o
BT-20 - - + + +
SUM190 - - + + +
HCC1143 - ++ ++ ++ ++
SUM1315mo - + + + +
SUM159 - - - - -
Claudin-low MDA-MB-231 - - - + +
Hs578T - - - -
BT-549 - - - - -

(-) Resistant, 0 to 10% cell rounding; (+) Sensitive, 11 to 50% cell rounding; (++) Highly Sensitive, >50% cell rounding. Toxin Sensitivity recorded at 8 h post

treatment.

cytochrome ¢ or caspase-3 was detected via western blot
analysis, suggesting that cell death was not mediated
through these apoptotic pathways (data not shown).
Collectively, these data suggest that expression of LSR
and not CD44 is required for sensitivity of breast cancer
cells to iota toxin.

Glycosylation status of LSR and CD44 relative to iota
toxin sensitivity

It is well established that glycosylation is necessary for
proper functioning of CD44 in certain pathways [12,40-42].
While the glycosylation status of LSR is not characterized,
sequence analysis indicates LSR contains residues as
potential N-glycosylation sites. Thus, to determine
whether glycosylation of LSR and/or CD44 plays a role
in iota toxin sensitivity, we first assessed the glycosyla-
tion status of LSR. MCE-7 cells were treated with ve-
hicle control or de-glycosylation agents Tunicamycin
or Swainsonine (25 pg/ml, each). Western blot analysis
indicated no shift in electrophoretic migration by SDS
PAGE, suggesting that LSR was not heavily glycosylated

(Additional file 2: Figure S2A). To verify that the de-
glycosylating agents were functioning properly in the same
cell line, expression of a known glycoprotein (E-cadherin)
was assessed [43,44]. Treatment of MCF-7 cells with
tunicamycin or swainsonine decreased the levels of
glycosylated E-cadherin (top band) and increased the
non-glycosylated (bottom) bands, thus confirming ac-
tivity of the de-glycosylation agents (Additional file 2:
Figure S2A). To confirm that the de-glycosylation agents
did not affect the role of LSR cytotoxicity, LSR+/CD44-
MCE-7 cells were cultured with or without Tunicamycin,
followed by iota toxin. As shown in Additional file 2:
Figure S2B and Additional file 3: Table S1, sensitivity of
breast cancer cells to iota toxin was not altered by tuni-
camycin, suggesting that glycosylation does not play a
role in toxin susceptibility.

Knowing that glycosylation is necessary for CD44
function in certain pathways [12,40-42], we sought to
determine whether glycosylation was required to convey
toxin resistance. When LSR-/CD44+ Hs578t cells were
treated as described above, sensitivity to iota toxin was

Table 2 lota toxin sensitivity of breast cancer cells following oleic acid treatment

Cell line la (10 ng/ml) la (10 ng/ml) + la (25 ng/ml) + la (50 ng/ml) + la (100 ng/ml) +
Ib (20 ng/ml) Ib (50 ng/ml) b (100 ng/ml) b (200 ng/ml)

T47D - + + + Tt

T47D + Oleic acid - ++ ++ ++ ++

SUM190 - - + + n

SUM190 + Oleic acid - - + ++ ++

(—) Resistant, 0 to 10% cell rounding; (+) Sensitive, 11 to 50% cell rounding; (++) Highly Sensitive, >50% cell rounding. Toxin Sensitivity at 8 h post treatment.
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not altered, suggesting that deglycosylation of CD44 does
not affect sensitivity to iota cytotoxicity (Additional file 2:
Figure S2B and Additional file 3: Table S1).

Previous studies have determined that LSR and CD44
have multiple variants/isoforms that occur in cancer
[45-47]. We performed variant specific qRT-PCR ana-
lysis in order to determine whether there was a correl-
ation between iota toxin sensitivity and expression of
LSR and/or CD44 variants. Although expression of LSR
and CD44 variants varied among cell lines, there was no
correlation between expression of LSR and/or CD44
variants with sensitivity to iota toxin (Additional file 4:
Figure S3 and Additional file 5: Figure S4).

LSR expression directly mediates iota toxin sensitivity in
breast cancer cells

To directly test the ability of LSR to convey iota toxin
cytotoxicity, we stably knocked down LSR in MCF-7 and
MDA-MB-231 cells resulting in decreased expression
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(64% and 46%, respectively) compared to control
(Figure 2A). LSR knockdown lines were subjected to
treatment with iota toxin, and as shown in Figure 2A and
Table 3, reduced LSR expression in MCF-7 cells resulted
in decreased sensitivity compared to scrambled control.
This result could be due to the high expression of LSR in
MCE-7 cells, suggesting there were still sufficient receptor
numbers on the surface to facilitate intoxication. Con-
versely, knockdown of LSR in MDA-MB-231 cells, which
have significantly lower basal levels of LSR expression
(Figure 1A) resulted in a significant decrease in toxin sen-
sitivity compared to scrambled, suggesting that reduction
of LSR diminishes iota toxin sensitivity (Figure 2A; cell
rounding quantified in Additional file 1: Figure S1B). To
confirm our findings, LSR was overexpressed in two iota
toxin resistant (LSR-/CD44+) cell lines, Hs578t and
SUM159 (Figure 2B), and then treated with iota toxin.
It is of note that overexpression of LSR in Hs578t and
SUM159 cells did not increase sensitivity to iota toxin.

MDA-MB-231

A MCF-7
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Figure 2 Changes of LSR expression alter iota toxin sensitivity in breast cancer. (A) MCF-7 and MDA-MB-231 cells were stably transfected
with either a scrambled control sShRNA plasmid (scrambled control-shRNA), or a plasmid containing shRNA specifically targeting LSR variant 1
(LSR-shRNA). Cells were grown to 80% confluence, lysates isolated, and then analyzed via western blot using an LSR-specific antibody and
a-tubulin for loading control. Cells were treated with la or la + Ib for 8 h. Representative images demonstrate cell rounding and detachment from
tissue culture dish, indicative of cell death. (B) Hs578t and SUM159 cells were stably transfected with either a control plasmid (pCMV), or a
plasmid containing the full-length gene for LSR variant 1 (LSR+). Cells were grown and treated as stated in (A). A minimum of three independent

experiments was performed for each analysis.
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Table 3 lota toxin sensitivity in LSR overexpressing and knockdown cells

Cell line la (10 ng/ml) la (10 ng/ml)+ la (25 ng/ml)+ la (50 ng/ml)+ la (100 ng/ml) +
Ib (20 ng/ml) Ib (50 ng/ml) 1b (100 ng/ml) Ib (200 ng/ml)
SUM1315mo-CMV - - - - +
SUM1315mo-CD44+ - - - . R
SUM1315mo-LSR+ - - + + T+
Overexpressing  SUM159-CMV - - - -
SUM159-LSR+ - - - . R
Hs578t-CMV - - - . -
Hs578t-LSR+ - - . + n
MCF-7 Scrambled Control - + 4+ ++
MCF-7 LSR shRNA - + + +
Knockdown SUM1315mo Control - + + + +
SUM1315mo-LSR shRNA - - - - -
MDA-MB-231 Scrambled Control - - - + +

MDA-MB-231 LSR shRNA -

(-) Resistant, 0 to 10% cell rounding; (+) Sensitive, 11 to 50% cell rounding; (++) Highly Sensitive, >50% cell rounding. Toxin Sensitivity at 8 h post treatment.

While there were a few cells that succumbed to the
toxin effects, the vast majority of the cell population
remained resistant to the toxin (Figure 2B; Table 3; cell
rounding quantified in Additional file 2: Figure S2B).
These data suggested that introduction of LSR into LSR
negative breast cancer cells does not increase sensitivity
to iota toxin.

CDA44 expression conveys resistance to iota toxin in
breast cancer cells

Given that introduction of LSR into LSR'°"/CD44"s"
expressing, claudin-low cell lines did not increase sensi-
tivity to iota toxin and that CD44 can facilitate iota cyto-
toxicity in non-breast cancer cells [35,36], we sought to
determine if iota toxin binding to CD44 was resulting in
resistance to cytotoxicity. The claudin-low breast cancer
cell line SUM1315mo was chosen as a model because
they are LSR'®"/CD44'°" and importantly, sensitive to
iota toxin. Consistent with our prior results, stable
knockdown of LSR in SUM1315mo cells (approximate
83% reduction in LSR; Figure 3A) significantly decreased
toxin sensitivity in a time and dose dependent manner
while overexpression significantly increased cytotoxicity
compared to control cells (P < 0.05; Figures 3B,C and 4; cell
rounding quantified in Additional file 1: Figure S1C,D).
This was contradictory to our data with CD44"8" express-
ing Hs578t and SUM159 cells. In the absence of CD44,
overexpression of LSR in SUMI1315mo cells increased
sensitivity to iota toxin. This supports the hypothesis that
CD44 expression in breast cancer cells may provide resist-
ance to iota toxin. To directly test the functional role of
CD44 in conveying toxin sensitivity, CD44 was overex-
pressed in our model (Figure 4B) and then treated with
iota toxin. Reintroduction of CD44 into SUM1315mo cells

indeed resulted in resistance to iota toxin (P < 0.05;
Figure 4C, D; cell rounding quantified in Additional
file 1: Figure S1E). Sensitivity of these cells was reduced to
control levels even in the presence of high concentrations
of iota toxin, directly demonstrating that CD44 expression
conveys resistance to intoxication.

CD44 inhibits endocytosis of iota toxin in breast cancer
cells

While CD44 promotes iota cytotoxicity in non-breast
cancer cells [35,36], our data is the first to illustrate that
CD44 may actually confer resistance to iota toxin in breast
cancer. To determine the mechanisms of resistance con-
veyed by CD44, we further investigated aspects of toxin
endocytosis via lysosome formation. LSR knockout and
knockin cells (SUM1315mo), as well as CD44 knockin
cells were treated with Ia only (control) or a high concen-
tration of iota toxin (Ia 100 ng/ml + Ib 200 ng/ml). When
challenged with iota toxin, significantly lower levels of
lysosomes were evident in LSR knockout cells compared
to scramble control cells (P<0.001; Figure 5A). Corres-
pondingly, LSR-overexpression increased the number of ly-
sosomes versus controls. Moreover, CD44-overexpression
in the cells directly demonstrated a significant reduction in
lysosome formation when challenged with the toxin com-
pared to controls and LSR + cells (P <0.001). These data
correlate LSR expression with enhanced toxin-stimulated
lysosome formation and establish a mechanism for CD44-
based inhibition via lysosome formation.

To confirm our results of toxin endocytosis and in-
corporation into lysosomes, cells were treated with or
without iota toxin, washed, and the lysates analyzed for
internalized iota toxin (Ib) via western blotting. Similar
to results observed with lysosome formation, knockdown
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Figure 3 Reduction of LSR expression increases resistance to cytotoxicity in LSR'®"/CD44"" cells. (A) SUM1315mo cells were stably
transfected with either a scrambled control shRNA plasmid (scrambled control-shRNA), or a plasmid containing shRNA specifically targeting LSR
variant 1 (LSR-shRNA). Lysates were isolated and analyzed via western blot using a LSR specific antibody and a-tubulin for loading control.
(B) Cells were treated with la or la+Ib for 8 h in complete growth medium at 37°C. Representative images demonstrate cell rounding and
detachment from tissue culture dish, indicative of cell death. (C) Cells death visualized in (B) was quantified at the indicated times via fluorescent
cytotoxicity assay. *P < 0.05. A minimum of three independent experiments was performed for each analysis. RFU; relative fluorescent units.

of LSR significantly decreased levels of intracellular toxin
compared to scrambled control, while overexpression in-
creased toxin endocytosis (P < 0.05; Figure 5B). These data
strongly confirm that LSR is not only a critical receptor
for iota toxin cytotoxicity in breast cancer, but that it
increases endocytosis of the toxin. Interestingly, re-
introduction of CD44 resulted in a significant decrease
in detectable Ib when compared to the control or LSR-
overexpressing cells. This indicates that expression of
CD44 in breast cancer cells confers iota toxin resistance

by inhibiting endocytosis, a role not previously defined
for CD44.

lota toxin has cytotoxic effects on tamoxifen-resistant
breast cancer

Cellular chemotherapeutic resistance is a major factor
involved in poor response and reduced survival in breast
cancer patients [48]. A common and successful targeted
therapy for ERa-positive breast cancers includes anti-
estrogen drugs, such as tamoxifen. However, an emerging
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Figure 4 Enhancing LSR expression increases iota cytotoxicity while reintroduction of CD44 conveys resistance in LSR'®"/CD44"°" cells.
SUM1315mo cells were stably transfected with a control plasmid (pCMV), a plasmid containing the full-length gene for LSR variant 1 (LSR+), or a
plasmid containing the full-length gene for CD44 variant 1. Cells were grown to 80% confluence; lysates were isolated and analyzed (A) via
western blot analysis using a LSR specific antibody and a-tubulin for loading control or by (B) immunofluorescence using CD44- and LSR-specific
antibodies. DNA was stained with DAPI. (C) Cells were treated with la or la + Ib for 8 h in complete growth medium at 37°C. Representative images
demonstrate cell rounding and detachment from tissue culture dish, indicative of cell death. (D) Cells death visualized in (C) was quantified at the
indicated times via fluorescent cytotoxicity assay. *P < 0.05. A minimum of three independent experiments was performed for each analysis.
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problem has been that ~33% of patients given tamoxifen
therapy for five years develop recurrent tumors, and of
those, 26% subsequently die [49-51]. Previous studies in
our laboratory show that LSR is positively correlated with
ERa expression [21]. Tamoxifen-resistant breast cancers
are derived from ERa-positive tumors, and thus are likely
to have high expression of LSR making them potential
candidates for successful treatment with iota toxin. Ultim-
ately, such information opens up the possibility that iota
toxin represents a novel, targeted therapeutic for breast
cancer.

To directly evaluate iota toxin susceptibly of tamoxifen-
resistant, MCF-7-derived breast cancer cell lines, ERa-
positive TMX2-4 and TMX2-11, as well as ERa-negative
TMX2-28, cells were assessed for LSR and CD44 expres-
sion. All three tamoxifen-resistant lines expressed LSR,
but not CD44 (Figure 6A), via western blot analysis. When
treated with iota toxin, all three tamoxifen-resistant
lines were readily susceptible (Figure 6B,C; *P < 0.05;

cell rounding quantified in Additional file 1: Figure S1F).
These data suggest that iota toxin has the potential as a
targeted therapy for tamoxifen-resistant breast cancers.

Discussion

The objective of the current study was to further
characterize the roles of LSR and CD44 during C. per-
fringens iota cytotoxicity on breast cancer cells. Two
studies have indicated that iota toxin has the ability to
bind to membrane-bound proteins, CD44 and LSR [35,36].
Complementary to the study by Papatheodorou et al. [35],
in HAP-1 and HeLa cells, treatment of 14 breast cancer
cell lines in our study show that those expressing LSR
were sensitive to iota toxin. Additionally, consistent with
reports in fibroblasts and hepatocytes demonstrating en-
hanced LSR-mediated endocytosis in the presence of oleic
acid, treatment of LSR-expressing breast cancer cells with
oleic acid increased sensitivity to iota toxin. However, our
data presents an interesting mechanism in breast tissue
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that is contrary to reports in other tissues. Remarkably,
breast cancer cells expressing CD44 displayed varying
levels of toxin resistance. Specifically, LSR+/CD44- lines
were highly sensitive, LSR+/CD44+ lines were slightly
sensitive, and LSR-/CD44+ lines were resistant to the
cytotoxic effects of iota toxin. Consistent with this ob-
servation, toxin sensitivity was highest in the luminal
cell lines, median in basal-like, and lowest in claudin-
low lines, corresponding to their reciprocal expression
levels of LSR and CD44. Toxin sensitivity among the
various basal-like cell lines was heterogeneous which
can be attributed, in part, to the individual cell lines di-
verse expression of both CD44 and LSR levels. It is im-
portant to note that while our data are unlike those
found in the study by Wigelsworth et al. [36], where
they found CD44 expression promotes iota intoxication
in Vero (African green monkey kidney) and human mel-
anoma (RPM) cell cultures (in vitro), as well as in mice
(in vivo lethality), the authors state that the cells they
used contained LSR. They further investigated interaction
between LSR and CD44 via co-precipitation experiments,
showing no interaction between the proteins; however,
they acknowledge that CD44 and LSR may co-facilitate
entry of iota toxin into cells via an unknown mechanism.

This is highlighted by the fact that the authors were
unable to completely block intoxication by anti-CD44
and high amounts of toxin still cause cytotoxicity in
CD44- cells [36].

Our current study suggests that the cellular response
to iota toxin is tissue-specific, and for reasons not totally
understood at this time. As CD44 serves many roles for
a cell, and appears as many different isotypes, there clearly
needs to be further study to determine more definitively
the role(s) played by CD44 during iota intoxication. In
fact, this current study reveals that CD44 prevents endo-
cytosis of iota toxin and conveys cytotoxic resistance in
breast cancer cells. Other studies have shown that post-
translational modifications of CD44 may also affect CD44
function and endocytosis [12,40-42]. In our current study,
we show that treatment with deglycosylation agents did
not appreciably affect iota toxin cytotoxicity; however,
other modifications unknown to us may be involved. For
example, inhibition of CD44 palmitylation has no effect
on CD44 binding to hyaluronan, yet there is inhibition of
hyaluronan internalization [52]. Moreover, the posttransla-
tional modifications and variants of LSR may also play a
role in tissue-specific toxin endocytosis. While currently
little is known about these variants and post-translational
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Figure 6 Tamoxifen-resistant breast cancer cells expressing LSR are sensitive to iota toxin. (A) Tamoxifen-resistant breast cancer cell lines
were grown to 80% confluence, and lysates analyzed via western blot using LSR- and CD44-specific antibodies; a-tubulin was used as a loading
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dish, indicative of cell death. (C) Cell death was quantitated at the indicated times via fluorescent cytotoxicity assay. *P < 0.05. A minimum of three
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modifications of LSR, one study identifies at least one
phosphorylated site (Ser** within RPRARpS***VDAL)
that affects binding of 14-3-3, a cytosolic adaptor protein
involved in mediating signaling pathways by binding to
phosphoserine-containing proteins [53].

Identifying the precise mechanisms of interaction
between iota toxin and cell-surface proteins, as well as
the subsequent downstream intracellular pathways that
lead to cytotoxicity, are necessary steps in developing
targeted therapies for breast cancer. Earlier studies show
that in Vero cells, iota toxin enters through clathrin-
independent endocytosis mechanisms, is dependent upon
dynamin, and regulated by Rho-GDI [54]. Similarly, both
CD44 and LSR have been proposed to be internalized via
clathrin-independent mechanisms in non-breast tissues
[36]. Central to our studies, breast cancer stem/tumor-
initiating cells have a significantly higher rate of clathrin-
independent endocytosis [55]. We have also previously

shown that cells expressing high levels of LSR have en-
hanced cancer stem cell-like properties [21], thus collect-
ively suggesting that iota toxin may have heightened
effects upon breast cancer stem cells.

Nagahama et al. [56] describe the dynamics of intra-
cellular trafficking of the Ib component of iota toxin.
Through their study of MDCK cells, they found that
post-internalization involves Ia escape from early endo-
somes into the cytosol and subsequent ADP-ribosylation
of a- and B-actin. The majority of Ib goes through the
endocytotic pathway into lysosomes and is degraded. A
small percentage of Ib reportedly recycles back to the
plasma membrane, which they suggest extends Ia entry
into the target cell [56,57]. In line with this mechanism,
our study revealed Ib within the lysates of LSR + cells
treated with iota toxin and enhanced lysosome forma-
tion, demonstrating Ib internalization. While we did not
presently analyze whether cells treated with low levels of
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toxin had a percentage of Ib recycled to the cell-surface,
this strengthens the potential of using iota toxin as a
therapeutic. Recycled Ib to the plasma membrane may
further sensitize the cancer cell to a secondary toxin (Ia)
treatment, thereby potentially eradicating any remaining
cells.

Tamoxifen and aromatase inhibitors (AI) are commonly
used to treat ERa-positive breast cancers as these ther-
apies inhibit estrogenic signaling, ultimately leading to
inhibition of cell proliferation and survival involving
activated apoptotic pathways [58-61]. Tamoxifen and
Al resistance are emergent clinical problems that induce
phenotypic changes in tumor cells, including decreased
apoptosis as well as increased proliferation and invasion
[58-61]; however, the molecular mechanisms behind re-
sistance are largely unknown. As we show in this current
study, iota toxin interacts with LSR to induce cell death
and LSR expression is correlated with ERa-positive breast
cancers [21]. Our laboratory is currently testing the poten-
tial of iota toxin as an adjuvant therapy for women with
ERa-positive, tamoxifen- and Al-resistant breast cancers.
We have previously shown a multifaceted role of LSR in
directing breast cancer cell behavior. For example, over-
expression of LSR enhances cell proliferation and mi-
gration, as well as stimulates cancer-stem cell related
properties such as survival in anchorage-independent
conditions [21]. We also show that LSR expression sig-
nificantly correlates with ERa expression in primary
breast cancer biopsies [21]. In the current study, we
show that tamoxifen-resistant breast cancer cell lines
also express LSR and are sensitive to iota toxin-induced
cytotoxicity. Iota toxin evidently circumvents the pro-
survival mechanisms employed in anti-hormone resist-
ant breast cancers by exploiting necrotic pathways.

Bacterial immunotoxins have been used in clinical tri-
als to successfully treat hematological malignancies and
solid tumors, as well as used as an adjuvant therapy tar-
geting mesothelin-expressing mesothelioma, ovarian, or
pancreatic cancer [62-66]. Immunotoxins derived from
Pseudomonas exotoxin A, or plant-based ricin, subunits
attached to antibody fragments have been evaluated in
Phase I and II clinical trials for treating solid tumors.
These trials revealed that immunotoxins could specifically
target cell-surface antigens expressed at high levels in
tumors. Another Phase I clinical trial, conducted by von
Minckwiz and colleagues, used a single-chain immuno-
toxin targeting Her2 from eighteen Her2-expressing
cancer patients. Intratumoral injections of immunotoxin
successfully reduced tumor size [64,65]. Additionally,
studies in nude mice with mesothelin-expressing tumor
xenografts reveal enhanced therapeutic responses when
taxon, or other cancer drugs, are administered in combin-
ation with SS1P, a high-affinity immunotoxin that targets
mesothelin [66]. A Phase I trial was subsequently initiated,
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where mesothelin-positive and recurrent or unresectable
mesothelioma, ovarian, or pancreatic cancer patients were
infused with SS1P continually for ten days. The recombin-
ant immunotoxin was well tolerated by patients and
showed modest clinical benefit. Our current study re-
vealed that iota toxin specifically targets LSR-expressing
breast cancer cells and exerts a rapid cytotoxic effect. This
gives iota toxin great potential to be utilized as an immu-
notoxin for (i) transporting foreign proteins into targeted
cells, (ii) modification to increase specificity to a specific
cell type, and (iii) increasing drug absorption of chemo-
therapeutic drugs [32,67].

Two studies with another bacterial toxin, Clostridium
perfringens enterotoxin (CPE), reveal that CPE specifically
targets claudin-overexpressing mouse NT6 fibroblasts, hu-
man colorectal adenocarcinoma (Caco-2), colon (HCT116)
and mammary (MCEF-7) cell lines [22,23]. The study by
Walther et al. utilized non-viral, intratumoral in vivo
gene transfer of CPE into mice with MCF-7 and HCT116
xenografts, resulting in reduced tumor growth compared
to control groups [22]. Translational explorations of C.
perfringens iota toxin as a chemotherapeutic are yet to be
exploited to date. A study by Sakurai and Kobayashi evalu-
ated the role of Ia and Ib subunits in guinea pigs [68].
When Ib was injected intradermally and Ia intrapertone-
ally, Ia was able to specifically target the Ib component in
the skin resulting in localized dermonecrosis without
other side effects. These studies support the feasibility of
iota toxin as a specific, localized tool for drug therapy. Im-
portantly, unlike CPE, which has the risk of eliciting its
toxic effects to normal claudin expressing cells, iota toxin
has had no reported effects in humans [68,69]. When
combined with aforementioned results from the Sakurai
and Kobayashi study, targeted therapeutics against breast
cancer derived from iota toxin may provide a well-
tolerated, effective alternative with lower off target effects
compared to current targeted therapies.

Conclusions

Our data presents an interesting mechanism of iota
toxin cytotoxicity in breast cancer. We demonstrate that
LSR is the cell-surface protein that mediates iota toxin
cytotoxicity through endocytosis in breast cancer cells,
and propose a novel role for CD44 as a driver of resist-
ance towards iota toxin via inhibition of endocytotic
mechanisms. Furthermore, we are the first to describe
LSR expression in tamoxifen-resistant breast cancer and
show the potential of iota toxin as a tool to overcome
cancer-stem cell like, pro-survival mechanisms and in-
duce necrotic cell death. Collectively, our data uniquely
show that iota toxin has the potential to become an ef-
fective, targeted adjuvant therapy for breast cancer and
alternative to current treatment options.
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Methods

Cell culture

MCE-7, T47D, ZR-75-1, HCC1937, MDA-MB-468, BT-
20, HCC1143, MDA-MB-231, Hs578t, BT-549, AU565,
SKBR3, M99005, MCF-10Al, MCF-10AIll, and MCF-
10AIV cells were obtained from American Type Culture
Collection (ATCC; Manassas, VA). SUM159, SUM149,
Sum190, and SUM1315mo cells were obtained from
Asterand (Detroit, MI, USA). TMX2-4, TMX2-11 and
TMX2-28 cells were a kind gift from Dr. Kathleen
Arcaro (University of Massachusetts, Amherst). Cells
were cultured according to manufacturer’s recommenda-
tions and passaged via trypsinization when approximately
80% confluent.

lota toxin, reagents, and toxicity testing

Iota toxin components la and Ib were purified as de-
scribed previously [70]. For toxin sensitivity assays, cells
were seeded at 1 - 3x10* concentrations, enabling con-
fluency 48 h later. Cells were then treated as either a
control (10 ng Ia/ml) or with varying concentrations of
iota toxin (Ia 10 ng/ml+1Ib 20 ng/ml; Ia 25 ng/ml +Ib
50 ng/ml; Ia 50 ng/ml + Ib 100 ng/ml; Ia 100 ng/ml + Ib
200 ng/ml) and cultured under normal growth condi-
tions. Observations to determine toxin sensitivity, indi-
cated by a rounded morphology indicative of cell death,
were made at 0, 1, 2, 4, 6, and 8 h post treatment. For
oleic acid assays, cells were treated in the presence or
absence of 0.8 mM oleic acid at 37°C, 30 min prior to
added toxin. Images were obtained by Spot Advanced
version 4.5 (Sterling Heights, Michigan).

Generation of knockdown and overexpressing cell lines
RFP containing HuSH shRNA plasmids containing Homo
sapiens LSR specific shRNA and Myc-DDK-tagged
TrueORF clones of Homo sapiens LSR and CD44 were
obtained from OriGene Technologies (cat# TF303412,
RC223636, and RC221771; Rockville, MD). Cells were
transfected using TurboFectin 8.0 (Thermo Scientific,
Rockford, IL) according to manufacturer’s instructions.
For stable transfection, cells were passaged at a 1:10 di-
lution into fresh growth medium containing 2.5 pg/ml
Puromycin or 500—900 pg/ml of G418 (Life Technologies,
Grand Island, NY). Control cells were simultaneously
transfected with an empty plasmid vector and selected in
antibiotic-containing medium as described above.

Western blot analysis

Cells were lysed in RIPA Buffer (50 mM Tris Base,
150 mM NaCl, 1 mM EDTA, 1% NP40, 0.25% sodium
deoxycholate) supplemented with protease and phosphat-
ase inhibitors (Halt™ Thermo Scientific, Rockford, IL).
Equal protein concentrations of total cell lysates, as de-
termined by the Coomassie Plus Protein Assay (Thermo
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Scientific, Rockford, IL), were separated by SDS-PAGE.
Proteins were transferred to nitrocellulose membranes
(BioExpress, Kaysville, UT). Membranes were blocked
in 5% non-fat milk in TBST (1.0 M Tris—HCI, 5.0 M
NaCl, 0.1% Tween) for 1 h at room temperature, then
incubated with primary antibody against LSR (1:750; sc-
133765), HCAM (CD44; 1:500; sc-7297), E-cadherin
(1:500; sc-7870; Santa Cruz Biotechnology, Santa Cruz,
CA), or anti-Ib (1:1000) overnight at 4°C in TBST contain-
ing 5% BSA. Membranes were then washed and incubated
with the appropriate secondary antibody conjugated to
horseradish peroxidase (GE Healthcare, Piscataway, NJ) in
TBST with 5% milk for 1 h at room temperature. Mouse
monoclonal a-tubulin antibody was used to evaluate equal
protein loading across all lanes at a 1:5000 dilution
(T6199; Sigma Aldrich, St. Louis, MO). WesternBright
ECL Kit (Bioexpress, Kaysville, UT) was used to detect
peroxidase activity. NIH Image J64 software was used to
quantify western blots.

Immunocytofluorescence

Immunocytofluorescence was performed as previously
described [71]. Briefly, cells were grown on 8-well cham-
ber slides (Research Products International, Mt. Prospect,
IL,) and fixed/permeabilized in ice-cold methanol:acetone.
Following fixation, cells were blocked with 1% BSA and
5% normal horse serum in PBS, stained with the indicated
primary antibody (1:100 dilution of anti-LSR, sc-133765
or anti-HCAM (CD44), sc-7297) for 1 h at 4°, washed,
and then incubated for 30 min with an anti-rabbit or
anti-mouse Alexa Fluor 488 secondary antibody (1:1000
dilution, Invitrogen). Coverslips were applied with ProLong®
Gold Antifade Reagent and DAPI (Life Technologies).
Imaging was performed on a Nikon DiaPhot microscope
with digital camera and NIS-Elements 4.11.00 (Nikon
Instruments Inc., Melville, NY). All cell lines and samples
were obtained in compliance with the Helsinki Declar-
ation and performed in accordance with the guidelines of
the North Carolina Central University Institutional Review
Board, approval 1201027.

Glycosylation analysis

Cells were grown under normal growth conditions until
approximately 70% confluent, and then serum starved
overnight. Cells were subsequently treated with 25 pg/ml
of either Tunicamycin (MP Biomedical LLC, Solon, OH)
or Swainsonine (Calbiochem, San Diego, CA), or vehicle
control. Twenty-four hours post treatment, cell lysates
were collected and analyzed via western blot analysis to
determine glycosylation status of LSR.

Lysosome detection assay
Cells were grown under normal growth conditions until
approximately 70% confluent. Cells were then treated as
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either a control (10 ng Ia/ml), or with iota toxin consisting
of Ia (100 ng/ml) plus Ib (200 ng/ml), and cultured under
normal growth conditions for 30 min. Following treat-
ment, LysoTracker Green DND-26 (Cell Signaling Tech-
nology, Danvers, MA) was diluted 1:20,000 (50 nM) and
added directly into growth medium, followed by imaging
on a NIS-Elements 4.11.00. A minimum of three replicate
wells was plated for each independent experiment, with a
minimum of five fields imaged per well.

Cell death assays

Cells were seeded at 1- 3x10* concentrations, obtaining
confluency 48 h later. Cells were then treated as controls
(10 ng Ia/ml) or with iota toxin at low (Ia 10 ng/ml + Ib
20 ng/ml) or high (Ia 100 ng/ml + Ib 200 ng/ml) concen-
trations followed by culturing under normal growth condi-
tions for 0, 2, 4, 6, and 8 h. Post treatment, cytotoxicity was
determined using a CytoTox-Fluor™ Cytotoxicity Assay
(Promega, Madison, W1I) per manufacturer’s instructions.

CDA44 variant analysis

RT-qPCR amplification reactions were conducted in du-
plicate using 1X Brilliant II SYBR® Green QPCR Master-
Mix (Agilent Technologies, Cary, NC) in the presence of
variant specific primers (800 nM each; Additional file 3:
Table S2) and 40 ng of cDNA (based on total RNA) in
20 pl. A non-template reaction was used as negative
control. PCR conditions consisted of denaturation at
95°C for 10 min, activation of the DNA polymerase,
followed by 40 cycles of 95°C for 15 seconds and spe-
cific annealing temperatures for each splicing variant
for 1 min. Melting curves were generated after amplifica-
tion at 95°C for 15 seconds, 60°C for 30 seconds and 95°C
for 15 seconds. All reactions were conducted in a Strata-
gene Mx3005P detection system (Stratagene, La Jolla, CA).
Amplification efficiency of each pair of primers was cal-
culated using standard curve dilutions and incorporated
into the calculation for relative expression differences
as previously described [72]. The optimal normalization
factor was calculated as the geometric mean of the refer-
ence targets B2M, SDHA, UBC and YWHAZ.

LSR variant analysis

RT-qPCR amplification reactions were conducted in du-
plicate using 1X Brilliant II SYBR® Green QPCR Master-
Mix (Agilent Technologies, Cary, NC) in the presence of
optimized variant specific primers (800 nM; Supplemen-
tary Table 1) and 100 ng of cDNA (based on total RNA)
in 20 pl. A non-template reaction was used as negative
control. PCR conditions were the same as those used for
CD44 analysis. All reactions were conducted in an Applied
Biosystems’ 7500 Real Time PCR system (Grand Island,
NY). Raw data were normalized to GAPDH and analyzed
via the comparative CT (**CT) method.
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Statistical analysis

To evaluate toxin sensitivity, relative percent of cell
rounding was determined via visualization using light
microscopy for each treatment group and statistical sig-
nificances between treatment groups and across cell
lines was determined by student t-test using GraphPad
Prism version 3.02 software (GraphPad Software Inc.,
San Diego, CA), significance was set at P < 0.05. Differ-
ences in statistical significance between cell lines regarding
CD44 and LSR expression levels (total and variants), was
determined by ANOVA and post-hoc two-tailed compari-
sons. Significance was set at P<0.05 and a Bonferonni
correction was used to adjust the P-value of t-tests. Graphs
were plotted in Microsoft Excel as mean + S.D.

Additional files

Additional file 1: Figure S1. Quantitation of iota toxin sensitivity by
percent cell rounding. (A) Relative quantitation of cell rounding for
Figure 1C & D, (B) Figure 2, (C) Figure 3B, (D & E) Figure 4C, (F) Figure 6B.
A minimum of three independent experiments was performed for each
analysis. *P < 0.05, A indicates P < 0.05 for comparison of the high toxin
concentration (la 100 ng/ml + Ib 200 ng/ml) to the low toxin
concentration (la 10 ng/ml + Ib 20 ng/ml).

Additional file 2: Figure S2. Glycosylation of LSR does not play a role
in toxin sensitivity. (A) MCF-7 cells were grown under normal growth
conditions until approximately 70% confluence. Cells were then serum
starved overnight followed by treatment with 25 pg/ml of Tunicamycin,
Swainsonine, or vehicle control in normal growth medium. Twenty-four
hours post treatment, cell lysates were collected and western blot ana-
lysis was performed to determine glycosylation status of LSR. (B) MCF-7
and Hs578t cells were serum starved overnight, 24 h post seeding then
treated 48 h post seeding with toxin and either vehicle control or 25 pg/
ml Tunicamycin. Rounding and detachment indicated cell death.

Additional file 3: Tables S1. lota Toxin Sensitivity of Cells Following
Tunicamycin Treatment. Table S2. Primers used to detect splice variants.

Additional file 4: Figure S3. CD44 variant expression does not
correlate with toxin sensitivity. Relative CD44 expression was determined
for seven splice variants using real time gRT-PCR. Data were normalized
to the geometric mean of the reference targets B2M, SDHA, UBC and
YWHAZ. A minimum of three independent experiments was performed
for each analysis.

Additional file 5: Figure S4. LSR variant expression and two LSR-
related proteins, ILDR1 and ILDR2, do not correlate with toxin sensitivity.
Relative LSR expression was determined for five splice variants using real
time qRT-PCR as well as the two LSR-related proteins, immunoglobulin-like
domain-containing receptor (ILDR) 1 and ILDR2. ILDR2 was not detected in
any breast cancer samples but readily detected in monocyte cell line, THP-1
(bottom right panel; representative ethidium bromide stained DNA gel).
Data were normalized to GAPDH. A minimum of three independent
experiments was performed for each analysis.
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