Notchless is required for axial skeleton formation in mice.

Sarah Beck-Cormier, M. Escande, Céline Souilhol, Sandrine Vandormael-Pournin, Sophie Sourice, Paul Pilet, Charles Babinet, Michel Cohen-Tannoudji

To cite this version:

HAL Id: pasteur-00990123
https://pasteur.hal.science/pasteur-00990123
Submitted on 17 Jun 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Notchless Is Required for Axial Skeleton Formation in Mice

Sarah Beck-Cormier1,2,a*, Marie Escande1, Céline Souilhol1,2b, Sandrine Vandormael-Pournin1,2, Sophie Sourice3, Paul Pilet3, Charles Babinet1,2†, Michel Cohen-Tannoudji1,2

1 Mouse Functional Genetics, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France, 2 Centre National de la Recherche Scientifique, URA 2578, Institut Pasteur, Paris, France, 3 Institut National de la Santé et de la recherche Médicale, U791, LIOAD, STEP group “Skeletal Tissue Engineering and Physiopathology”, Nantes, France

Abstract

Maintenance of cell survival is essential for proper embryonic development. In the mouse, *Notchless homolog 1 (Drosophila)* (*Nle1*) is instrumental for survival of cells of the inner cell mass upon implantation. Here, we analyze the function of *Nle1* after implantation using the *Meox2*tm1(cre)Sor mouse that expresses the Cre recombinase specifically in the epiblast at E5.5. First, we find that *Nle1* function is required in epiblast cells, as *Nle1*-deficient cells are rapidly eliminated. In this report, we also show that the *Meox2* tm1(cre)Sor transgene is active in specific tissues during organogenesis. In particular, we detect high Cre expression in the vertebral column, ribs, limbs and tailbud. We took advantage of this dynamic expression profile to analyze the effects of inducing mosaic deletion of *Nle1* in the embryo. We show that *Nle1* deletion in this context, results in severe developmental anomalies leading to lethality at birth. Mutant embryos display multiple developmental defects in particular during axial skeletal formation. We also provide evidence that axial defects are due to an increase in apoptotic cell death in the somite at E9.5. These data demonstrate an essential role for *Nle1* during organogenesis and in particular during axial development.

Editor: Moises Mallo, Instituto Gulbenkian de Ciência, Portugal

Received February 6, 2014; Accepted May 3, 2014; Published May 29, 2014

Copyright: © 2014 Beck-Cormier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Centre National de la Recherche Scientifique, the Institut Pasteur and the Agence Nationale de la Recherche (contract n° JC05_41835). CS received grants from the Centre National de la Recherche Scientifique (Bourse de Doctorat pour les Ingénieurs). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: m-cohen@pasteur.fr

a Current address: Institut National de la Santé et de la recherche Médicale, U791, LIOAD, STEP group “Skeletal Tissue Engineering and Physiopathology”, Nantes, France

b Current address: MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom

† Deceased

Introduction

The *Notchless homolog 1 (Drosophila)* (*Nle1*) gene codes for a member of the WD-repeat containing protein family involved in a wide range of cellular functions including cytoskeleton assembly, cell division, transcriptional regulation, RNA processing and signal transduction [1–4]. Initially, *Nle1* was identified in *Drosophila* as a direct regulator of Notch activity, although the molecular mechanism underlying this regulatory process has not been characterized [2]. Interestingly enough, *Nle1* was shown to have an ancient evolutionary origin, appearing before the emergence of pluricellularity and intercellular signaling pathways [5]. In yeast, the *Nle1* ortholog *Rsa4* is essential for ribosome biogenesis. It assembles in the nucleolus with the pre-60S ribosomal subunit and interacts through its well-conserved amino-terminal region with the AAA-ATPase *Real*. This interaction is required for the disassembly of non-ribosomal factors prior to export of the mature large subunit to the cytoplasm [6]. We recently showed that the key role of *Nle1* in 60S biogenesis is conserved during evolution. Using conditional inactivation in adult mice, we demonstrated that *Nle1* regulated ribosome biogenesis in hematopoietic stem cells and immature progenitors and was required for the maintenance of these populations [7]. Strikingly, *Nle1* was dispensable for ribosome biogenesis, proliferation and differentiation of B lymphocytes, suggesting that alternative pathways for 60S subunit production might exist and be differentially active depending on cell type or degree of differentiation.

Limited data is available so far concerning the role of *Nle1* during embryonic development. We previously reported that constitutive *Nle1* inactivation leads to embryonic lethality around the time of implantation due to selective apoptosis of pluripotent cells of the blastocyst [1]. Early embryonic lethality has recently been reported for mice homozygous for non-conservative missense *Nle1* mutations obtained by ENU mutagenesis [8]. To bypass the early embryonic lethality caused by *Nle1* deficiency and address the role of *Nle1* following implantation development, we conditionally inactivated the *Nle1* gene using the *Meox2*tm1(cre)Sor strain of mice (called MORE hereafter) harboring the *Meox2*Cre allele which directs Cre recombinase expression in the epiblast at embryonic day (E) 5.5 [9]. Using this approach, we showed that
Role of Nle in the Formation of Axial Skeleton

Nle1 is required in epiblast cells after implantation. We also uncovered a second wave of transcriptional activity of the \textit{Mox2}cre allele resembling endogenous \textit{Mox2} gene expression profile. Analysis of \textit{Nle} conditional mutant embryos after gastrulation points to an important role for \textit{NLE1} in formation of the axial skeleton.

Results

\textbf{NLE1 is required in epiblast cells after implantation}

To analyze the function of \textit{NLE1} in post-implantation embryos, we adopted a conditional gene targeting strategy. Conditional \textit{Nle1flox/flox} mice were crossed to \textit{Nle1cre}-\textit{Mox2Cre/GFP} mice carrying a \textit{Nle1-null} allele (\textit{Nle1lox/lox} or \textit{Nle1fl/5}) and the \textit{Mox2Cre} allele, which drives expression of \textit{Cre} recombinase in the post-implantation epiblast from E5.5 [1,9,10]. We first monitored the activity of the \textit{Mox2Cre} allele in our crosses using the \textit{Rosa26STOP-LacZ} reporter mice [11]. In E7.5 \textit{Rosa26STOP-LacZ/+; Nle1flox/+; Mox2Cre/+} control embryos, we observed that \textit{Cre} was active in the epiblast and the large majority of cells showed recombination at the \textit{Rosa26STOP-LacZ} allele (blue cells) as expected (Fig. 1A). Noticeably, the number of blue cells was lower in \textit{Rosa26STOP-LacZ/+; Nle1flox/+; Mox2Cre/+} mutant embryos, suggesting incomplete recombination of the \textit{Nle1}flo allele has occurred in the epiblast of mutant embryos. We next monitored the efficiency of recombination at the \textit{Nle1} locus by PCR analysis of whole embryo or dissected embryonic organs at various developmental stages (Fig. 1B-C). The unrecombined \textit{Nle1}flo allele was readily detected in E7.5 to E15.5 embryos, indicating that recombination of the \textit{Nle1}flo allele in pluripotent epiblast cells was incomplete. Accordingly, \textit{Nle1flo/5Mox2Cre/+} mutant embryos were named \textit{Nle1}mcKO embryos for \textit{Nle1} mosaic conditional Knock Out embryos since they were composed of a mixture of \textit{Nle1-deficient} (\textit{Nle1lox/5}/\textit{A}) and \textit{Nle1-proficient} (\textit{Nle1lox/5}/\textit{B}) cells.

At E7.5 and E8.5, although the \textit{Nle1}A allele could be detected in control embryos, it was hardly detectable in \textit{Nle1}mcKO embryos (Fig. 1B). No morphological defects were observed in the mutant embryos at these stages suggesting that \textit{Nle1-deficient} cells had been selected at the expense of \textit{Nle1-proficient} cells during gastrulation. The higher proportion of epiblast cells with unrecombined \textit{Rosa26STOP-LacZ} allele in mutant embryos compared to controls (Fig. 1A) suggests that selection of cells with low \textit{Cre} activity had occurred during gastrulation. Importantly, when the Sox2-Cre driver line with higher \textit{Cre} recombinase activity [12] was used to inactivate \textit{Nle1} in the epiblast cells, developmental arrest at E7.5-E8.5 was observed (Table S1). Collectively, these data indicate that \textit{Nle1} is required for survival and/or proliferation of epiblast cells of postimplantation embryos.

\textbf{Mox2cre expression is dynamic during embryonic development}

At later stages of development, we observed a dynamic profile of recombination at the \textit{Nle1}flo allele. In E10.5 control embryos, all tissues displayed similar ratios of \textit{Nle1}A over \textit{Nle1}flo allele (~50% recombination efficiency) except for tailbud samples that contain the pre-somatic mesoderm (PSM) and the newly formed somites, which showed higher degrees of recombination (Fig. 1C). Five days later, we observed near complete conversion of \textit{Nle1}flo allele to \textit{Nle1}A allele was observed in most tissues except brain, spinal cord and liver (Fig. 1C). This indicated that \textit{Cre} recombinase expression was not limited to the epiblast and that \textit{Cre} activity was heterogeneous after gastrulation. The expression profile of the \textit{Mox2}cre allele has been determined using \textit{Cre} activity reporter lines [12,13]. Such a strategy allows us to determine the initial phase of \textit{Cre} recombinase activity in a given lineage but is uninformative regarding the dynamics of \textit{Cre} expression in the progenies of the primary recombined cells. Consequently, the \textit{Mox2}cre expression profile after gastrulation has not been determined so far. We therefore monitored \textit{Cre} mRNA expression by \textit{in situ} hybridization on E8.5 to E11.5 embryos recovered from crosses between wild-type females and \textit{Mox2}Cre/+ males. At E8.5, no \textit{Mox2Cre} expression could be observed (Fig. 2A). At E9.0 and E9.5, \textit{Mox2cre} transcriptional activity was detected in the somites and in the anterior PSM (Fig. 2B,C). At E11.5, the \textit{Mox2cre} allele was expressed in the newly formed somites, in limb muscles, metanephric mesenchyme and mesenchymal cells of palatal shelves (Fig. 2E and not shown). In addition, real-time RT-PCR on dissected tissues from E14.5 control embryos confirmed the heterogeneous \textit{Mox2cre} expression pattern showing highest levels in the ribs, limbs, vertebral column and tail (Fig. 2F). We conclude
that the MORE mouse strain not only allows recombination of conditional alleles in epiblast cells but also during organogenesis.

Mosaic inactivation of Nle1 leads to abnormal organogenesis

Nle^{+/−} embryos were recovered at expected Mendelian ratios until birth but exhibited multiple and severe developmental anomalies (Table 1 and Fig. 3). Morphological defects were first observed at E10.5 when mutant embryos exhibited segmented but irregular somites (Fig. 3A). From E11.5, all *Nle^{+/−}* embryos could be distinguished from their littermates by a shortened or absent tail, edema and hemorrhages along the entire length of the embryo (Fig. 3A). To study the formation of the axial skeleton, E14.5 embryos were stained with alcian blue. Analysis of mutant embryos revealed rare axial skeleton structures (absence of ribs, rare and disorganized vertebrae and vestigial tail), whereas cranial bones derived from cephalic mesoderm and neural crest and bones of the limbs derived from lateral mesoderm were present and displayed no gross morphological abnormalities except for a reduced size (Fig. 3B). To be precise about the developmental defects observed in mutant embryos, serial sections were stained with alcian blue. We found, when present, fused vertebrae in mutant embryos compared to controls (Fig. 3C, S1). In addition, *Nle^{+/−}* embryos exhibited neural tube defects and small or absent kidneys (Fig. 3C, S1). At E18.5, alcian blue (cartilage) and alizarin red (bone) staining of skeletal preparations showed that, in addition to the absence of axial skeleton, the elements of cranial and appendicular skeleton (limbs) were undersized and showed

Figure 2. Meox2^{Cre} expression pattern during post-implantation development. A–E. Whole-mount ISH performed on Meox2<sup>Cre^{+/−} embryos at E8.5 (A), E9 (B), E9.5 (C) and E11.5 (E). (E8.5: n = 2, E9–E9.5: n = 9, E11.5: n = 2 *Meox2<sup>Cre^{+/−}; Nle1^{+/−}* embryos) No signal was observed in Meox2^{+/−} embryos at any developmental stages (result shown at E9, D). mm: metanephric mesenchyme, dmm and vmm: dorsal and ventral muscle masses, *: anterior part of pre-somatic mesoderm. **F.** Real-time RT-PCR from RNAs extracted from E14.5-organs (n = 3 *Meox2<sup>Cre^{+/−}; Nle1^{+/−}* embryos). The expression level of Cre in tissues was calculated with the 2^{−ΔΔCt} method [42] after normalization with TBP and Tubuline β 5. We arbitrarily choose to compare Cre expression levels in various tissues relative to those expressed in the brain. Bars are means (SD).

doi:10.1371/journal.pone.0098507.g002
scarce mineralized bone tissue in Nle1 mcKO embryos compared to controls (Fig S2). This phenotype was also evidenced at E17.5 using 3D \mu CT images acquisitions from E17.5 control and mutant embryos (Movies S1, S2). These results showed that Nle1 is essential during organogenesis and in particular for the formation of the axial skeleton.

\textit{Nle1} \textit{mcKO} mutant embryos have impaired somite formation

The observation that axial skeleton development is compromised in \textit{Nle1} \textit{mcKO} mutant embryos led us to analyze somitogenesis. After segmental border formation and epithelialization, cells located in the dorsal region of the somite give rise to dermomyotome and myotome, while cells in the ventro-medial region de-epithelialize to form the sclerotome responsible for the future axial skeleton. To characterize the nature of axial defects, we first performed histological analysis of somitic region of control and \textit{Nle1} \textit{mcKO} embryos between E9.5 (stage at which Meox2 Cre is active again) and E11.5. At E9.5, while dermomyotome of \textit{Nle1} \textit{mcKO} somites was clearly visible on transverse sections, both the dermomyotome and the underlying mesenchyme appeared as loose tissues compared to controls (Fig. 4A). Sagittal sections of E11.5 \textit{Nle1} \textit{mcKO} embryos revealed fusion of the dorsal root ganglia and absence of sclerotome condensations that are indicative of abnormal somitogenesis (Fig. 4B). To further precise the origins of axial skeleton defects, we analyzed the expression pattern of somitic markers by whole mount \textit{in situ} hybridization at E9.5 and E10.5. We observed that the expression pattern of markers of all somitic compartments (\textit{Paraxis} for newly formed somites, \textit{Pax1} for sclerotome, \textit{Paraxis} and \textit{Pax3} for the dermomyotome and \textit{Myf5} for the myotome) were similar in \textit{Nle1} \textit{mcKO} embryos compared to controls at E9.5 (Fig. S3). At E10.5, \textit{Pax1} was downregulated in the dorsal part of somites and especially in the most rostral somites in \textit{Nle1} \textit{mcKO} embryos (Fig. 5). This downregulation was specific for sclerotomal defects since normal \textit{Pax1} expression was observed elsewhere (pharyngeal arches and at the basis of the limb bud). We also examined the expression pattern of dermomyotome and myotome markers (\textit{Paraxis}, \textit{Pax3} and \textit{Myf5}) and showed that both compartments were perturbed in E10.5 \textit{Nle1} \textit{mcKO} embryos. Indeed, \textit{Paraxis} exhibited a segmental pattern in the somites of control embryos, whereas expression in \textit{Nle1} \textit{mcKO} embryos was truncated dorsally with a more severe downregulation in the most rostral somites. In addition, no expression of \textit{Myf5} was detected in the dorsal part of the mutant somites. Similarly, \textit{Pax3} expression domain in the dermomyotome was severely reduced, especially in the dorsomedial lips, whereas a narrow signal was still observed in the dorsolateral lips. Absence of \textit{Pax3} expression was observed in the limb muscle primordial cells. In contrast, no major alterations of \textit{Pax3} expression profile was observed in the central nervous system. These data show that Nle1 function is critically required for the patterning of somitic derivatives.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Profound axial anomalies in Nle1 \textit{mcKO} mutant embryos. A. Lateral views of E10.5, E11.5 and E14.5 control and Nle1 \textit{mcKO} embryos. Irregular somites (E10.5), edema and hemorrhages (E11.5 and E14.5) and vestigial tail (E14.5) are indicated (arrows). B. Cartilage staining of E14.5 control (left, ventral and dorsal views) and Nle1 \textit{mcKO} embryos (right, ventral and dorsal views). Note that ribs are missing and a few vertebrae remnants are detected along the neural tube. Magnified views of upper limbs (bottom) show that appendicular bones are present and exhibit reduced size in mutant embryos. C. Alcian blue staining of histological sections of E14.5 control (left) and Nle1 \textit{mcKO} (right) embryos. Vertebrae (black arrowhead), ribs (white arrowhead) and kidney (arrow) are indicated in the control embryo and are absent in the Nle1 \textit{mcKO} mutant embryo. Note that dorsal spinal ganglia (thin arrows) are regularly spaced along the vertebral column in control embryos and fused in the Nle1 \textit{mcKO} mutant embryo. li: liver. Scale bar: 500 \textmu m. doi:10.1371/journal.pone.0098507.g003}
\end{figure}
Table 1. Number of mutant embryos and pups obtained from crosses between Nle1\(^{\text{lox/lox}}\) and Nle1\(^{\text{LacZ}+/+}\); Meox2\(^{\text{Cre/+}}\) mice at various stages.

<table>
<thead>
<tr>
<th>Stages</th>
<th>Total embryos</th>
<th>Mutant progeny*</th>
</tr>
</thead>
<tbody>
<tr>
<td>E6.5–E8.5</td>
<td>203</td>
<td>50 (25%)</td>
</tr>
<tr>
<td>E9.5–E11.5</td>
<td>364</td>
<td>104 (29%)</td>
</tr>
<tr>
<td>E13.5–E15.5</td>
<td>56</td>
<td>19 (34%)</td>
</tr>
<tr>
<td>E17.5–E18.5</td>
<td>48</td>
<td>13 (27%)</td>
</tr>
<tr>
<td>pups</td>
<td>41</td>
<td>11 (27%)</td>
</tr>
</tbody>
</table>

*Absolute number and frequency (%).

Nle1\(^{\text{mcKO}}\) mutant embryos exhibit upregulated caspase3-dependent apoptosis in the somites and the neural tube

The observation that all somitic markers are rapidly downregulated in Nle1\(^{\text{mcKO}}\) embryos led us to analyze if a loss of somitic cells had occurred due to cell death. Cell death was investigated by immunostaining using a specific antibody recognizing the active form of caspase 3 and by using LysoTracker\textregistered Red marker, previously demonstrated to be an accurate marker of cell death in embryos [14,15]. Importantly, Cre-mediated apoptosis has been described in several Cre transgenic mouse lines [14], but so far not in Nle1\(^{\text{mcKO}}\) embryos. The observation that all somitic markers are rapidly downregulated in Nle1\(^{\text{mcKO}}\) embryos led us to analyze if a loss of somitic cells had occurred due to cell death. Cell death was investigated by immunostaining using a specific antibody recognizing the active form of caspase 3 and by using LysoTracker\textregistered Red marker, previously demonstrated to be an accurate marker of cell death in embryos [14,15]. Importantly, Cre-mediated apoptosis has been described in several Cre transgenic mouse lines [14], but so far not in the Nle1\(^{\text{mcKO}}\) line. The absence of sclerotomal condensations (arrowhead in control) and picnotic nuclei visible in the neural tube of E9.5 Nle1\(^{\text{mcKO}}\) embryos at E9.5 (transverse section of the tail, A) and at E11.5 (sagittal section of interlimb region, B) indicated the picnotic nuclei visible in the neural tube of E9.5 Nle1\(^{\text{mcKO}}\) embryos at E9.5 (transverse section of the tail, A) and at E11.5 (sagittal section of interlimb region, B) indicated the

Discussion

In the present study, the use of the Meox2\(^{\text{Cre/+}}\) line shows that NLE1 is critically required during organogenesis and in particular for the axial skeleton formation. Based on our data, we propose that partial disruption of Nle1 leads to an increase in apoptotic cell death in the somites responsible for abnormal patterning of the somites leading to axial skeleton defects.

The MORE mouse strain is commonly used to generate null alleles from conditional floxed alleles or to determine if defects in extraembryonic tissues contribute to mutant phenotype by invalidating the gene of interest specifically in the epiblast [9]. The efficiency of recombination mediated by Meox2\(^{\text{Cre/+}}\) depends on the floxed allele to be recombined. Hence, Meox2\(^{\text{Cre/+}}\) activity allowed the full recombination of a floxed allele to be recombined. Hence, Meox2\(^{\text{Cre/+}}\) activity has been shown to mediate only partial recombination of the conditional alleles of Sonic Hedgehog, Bmpr1a, Nodal, Peg5, PPAR\(_{\gamma}\) and fgf8 genes during development [12,13,17–20]. Here, we show that Meox2\(^{\text{Cre/+}}\) activity in the post-implantation epiblast was not sufficient to achieve full recombination of the Nle1\(^{\text{floxed}}\) allele as indicated by the fact that Nle1\(^{\text{floxed}}\) allele can be readily detected in E7.5 and E9.5 control embryos. At these stages, mutant embryos were almost exclusively composed of unrecombined cells, and we propose that Nle1-deficient epiblast cells are eliminated rapidly after their generation. Accordingly, when using a more active epiblast Cre driver line, i.e, the Sox2-Cre line, embryonic lethality around E7.5 was observed. Collectively, our data demonstrate that the use of the Meox2\(^{\text{Cre/+}}\) line does not allow the generation of embryos deficient for Nle1 prior to organogenesis despite Cre

Figure 4. Histological analysis of somitic regions of control and Nle1\(^{\text{mcKO}}\) mutant embryos. Embryos were sectioned and stained with hematoxylin and eosin at E9.5 (transverse section of the tail, A) and at E11.5 (sagittal section of interlimb region, B). Arrow indicated the picnotic nuclei visible in the neural tube of E9.5 Nle1\(^{\text{mcKO}}\) embryos. At E11.5, absence of sclerotomal condensations (arrowhead in control) and fusion of dorsal spinal ganglia (sg) are shown. doi:10.1371/journal.pone.0098507.g004
recombinase expression in the epiblast. While the MORE mouse has proven its interest in generating loss-of-function phenotypes in the embryo-proper, caution should be taken when using this strain to study gene function in early embryos. Indeed, in case of genes with essential functions for epiblast cells, low efficiency of recombination combined to rapid expansion of non-recombined epiblast cells may give rise to misleading interpretations.

The MORE line was obtained by inserting a nls-Cre recombinase cassette into the \textit{Meox2} gene by homologous recombination [9]. Cre activity was thus anticipated to mimic the expression profile of the endogenous \textit{Meox2} gene, which starts to be expressed in the epithelial somite and then becomes restricted to the sclerotome and limb musculature [21,22]. Unexpectedly and for reasons that have remained unexplained so far, the \textit{Meox2} allele drives Cre expression in the epiblast at E5.5. The observation that the \textit{Nle1} \textit{mcKO} allele was recombined in a tissue-specific manner during the second half of gestation lead us to unravel a second wave of transcriptional activation of the \textit{Meox2} allele that starts between E8.5 and E9.5 and is restricted to the somites and the anterior part of the PSM. At later stage of development, \textit{Meox2} expression was detected in various organs, being low in endoderm-derived (liver, gut) and neuroectoderm (brain, spinal cord) tissues and high in mesoderm-derived (ribs and vertebral column, heart) tissues. Although our analysis at late stages of development was performed by real-time RT-PCR and therefore lacks cellular resolution, \textit{Meox2} expression seems consistent with the widespread expression of the \textit{Meox2} gene in mesenchymal derivatives of E14.5 embryos [23]. Our data thus suggests that after a transient peak of expression in epiblast cell of early postimplantation embryos, \textit{Meox2} expression is likely to recapitulate endogenous \textit{Meox2} gene expression. It would be interesting to determine whether this secondary wave of Cre expression contributed to the axial skeleton-specific phenotype previously reported following forced \textit{Cyclooxygenase-2} expression using the MORE line [24].

One of the most striking abnormalities of \textit{Nle1} \textit{mcKO} embryos is the lack of axial skeleton. By the time the second wave of \textit{Meox2} expression, a dramatic increase in apoptosis was observed in the somites of E9.5 mutant embryos that likely contribute to somite mispatterning. Consistent with abnormal axial skeleton formation, histological and gene expression analyses showed that the sclerotome compartment was severely disorganized and that \textit{Pax1} was downregulated at E10.5. At E11.5, histological sections confirmed the dramatic effect of \textit{Nle1} invalidation on the sclerotomal compartment since no chondrogenic differentiation was observed. Other defects were observed in \textit{Nle1} \textit{mcKO} embryos including kidney dysgenesis, neural tube defects, edemas (probably due to cardiac defects [25,26]) and hemorrhage. During embry-
several members of the Notch pathway differ from those observed
However, the somitic defects reported for embryos mutant for
and E10.5 (n = 3 mutants and n = 8 controls including 2
E9.5 and E10.5 control and mutant embryos were
embryos. A.

The somites (E10.5) of control embryos. In

staining of transverse section of the caudal part of embryos are shown.

Nle1

mcKO

embryos, high number of apoptotic cells was observed
(arrowheads) in the neural tube and the somites. (n = 3 mutants and
n = 4 controls including a Meox2

mcKO

embryo). No increase in apoptosis
was observed due to the expression of the Meox2

mcKO

allele.
doi:10.1371/journal.pone.0098507.g006

in Nle1

mcKO

embryos. Hence, inactivation of Notch1, Dll1 or RBPj

genes lead to abnormal timing and coordination of somite segmentation, highlighted by disruptions in size and bilateral symmetry of the somites [32–34]. By contrast, Nle1

mcKO

embryos were correctly segmented as judged from histological examinations and segmented expression of somitic markers. Moreover, absence of somites at the caudal most regions was also reported in embryos mutant for several members of the Notch pathway [32,34–36], while this phenotype was not observed in Nle1

mcKO

embryos. While one should keep in mind that conditional inactivation of Nle1 by Meox2

mcKO

is not temporally, spatially or quantitatively equivalent to the mentioned Notch mutants, the phenotypic discrepancies suggest that abnormal somite patterning in Nle1

mcKO

embryo is not caused by a dysregulation of the Notch pathway. In yeast, NLE1 ortholog, Rsa4, was shown to participate in pre-60S ribosomal subunit assembly [6], and conservation of the critical role of NLE1 in ribogenesis was recently demonstrated in mouse embryonic stem cells and immature hematopoietic cells in adult mice [10]. Defective ribosome biogenesis following Nle1 inactivation was shown to trigger the disappearance of hematopoietic stem cells and immature progenitors through p53-dependent mechanisms. It is therefore likely that the phenotypes observed in Nle1

mcKO

embryo were consecutive to defects in ribosome biogenesis. Interestingly, defects in the craniofacial, axial and limb skeleton were reported in patients and animals models with haploinsufficiency for ribosomal protein genes or mutations for ribosome biogenesis factors [37–40]. However, limited data are available concerning the mechanisms by which these mutations are affecting the developing skeleton. Strikingly, haploinsufficiency of ribosomal protein L38 (RPL38) in mice lead to abnormal axial skeletal patterning due to selective reduction in the translation of a subset of Hox mRNAs [41] indicating that ribosome composition may also impinges on developmental processes. Interestingly, outcompeting between wild-type and Rpl24

mcKO

mutant cells is observed in Rpl24

mcKO

mutant mice [37], reminiscent of the selection of Nle1-deficient cells at the expense of Nle1-proficient cells that we observed in Nle1

mcKO

embryos before gastrulation. Further studies will be required to establish whether ribogenesis is affected in Nle1

mcKO

embryos and to determine the mechanisms responsible for the elimination or outcompetition of Nle1-deficient cells.

Materials and Methods

Ethics statement

Animals were housed in the Institut Pasteur animal facilities accredited by the French Ministry of Agriculture to perform experiments on live mice (accreditation B 75 15–06, issued on May 22, 2008) in compliance with the NIH Animal Welfare (Insurance #A5476-01 issued on 02/07/2007).

Mice

To specifically inactivate Nle1 in the epiblast, Nle1

LacZ/+ mice [1] were crossed to Meox2

LacZ/+ to produce Nle1

LacZ/+Meox2

LacZ/+ mice. These mice were then crossed with conditional Nle1

LacZ/+ mice [10] to produce control and Nle1

LacZ/0 embryos. International strain nomenclature are Nle1

mcKO

for Nle1

LacZ/0 strain, Nle1

mcKO

Cre/0 for Nle1

LacZ/0 strain and Meox2

mcKO

Cre/0 for the Meox2

mcKO

strain. The colonies were maintained on a 129Sv/C57BL/6 mixed genetic background. Nle1

mcKO

mutant embryos were systematically compared to control littermates. Genotyping of embryos was then
performed by PCR using the following primers LacZ-Forward: 5’-ACTATCCGAGCGCCTCTAC-3’; LacZ-Reverse: 5’-GCTGGTTTCCATGAGTGTCC-3’; Cre-Forward: 5’-CACGACAACTGAGCACAAT-3’ and Cre-Reverse: 5’-TCCCGAAGATTGGCCAAGATA-3’. Female mice were used between 6 and 14 weeks of age for most of the experiments. Pregnant mice were sacrificed by cervical dislocation for embryo recovery.

PCR genotyping of embryos, foetal tissues and mice
Biopsies from mice and portion of embryos (i.e., egg cylinders, yolk sacs) were used for genotyping by PCR. These tissues were lysed in 50 mM Tris-Hcl pH 8.5, 100 mM NaCl, 0.5% Tween and 0.1 mg/ml proteinase K at 56°C. Proteinase K was then inactivated at 95°C for 15 min before PCR amplification.

Real-time RT-PCR
Total RNA was isolated from organs of E14.5 Meox2 (Cre/+) embryos using Nucleospin RNA columns (Macherey Nagel). RT-PCR amplifications were performed using SuperScript III First-Strand Synthesis kit (Invitrogen) according to the manufacturer’s instructions. Real time PCR was performed using SYBR Select Master Mix (Life Technologies) on an Mx3000P detection system (Agilent Technologies). The TBP and Tubulin β5 genes were used as reference genes and expression differences were calculated as described [42]. Primers used are: Cre-Forward: 5’-CAGCAC-CAAGTGACAGCAAT-3’ and Cre-Reverse: 5’-TCCCCAGAAATGCCAGATTA-3’ and TBP-Forward: 5’-AGAAGATCTCATAGGAGC-3’ and TBP-Reverse: 5’-GGGAACCTCAGATCAGCTC-3’ and Tubulinβ3-Forward: 5’-GATCGGTGCTAAGTTCTGGGA-3’ and Tubulinβ3-Reverse: 5’-AGGGACATACTTGCCACCTGT-3’.

Histological analysis
Embryos were fixed overnight in 4% paraformaldehyde and then dehydrated and embedded in paraffin. Next, 4 µm sections were treated with hematoxylin and eosin or alcin blue using standard procedures.

Skeletal preparations
For staining and visualization of whole skeletons, embryos were dissected and stained with alizarin red S and alcian blue 8GX (Sigma) as described [43]. For staining and visualization of whole skeletons, embryos were dissected and stained with alizarin red S and alcian blue 8GX (Sigma) as described [43]. For staining and visualization of whole skeletons, embryos were dissected and stained with alizarin red S and alcian blue 8GX (Sigma) as described [43]. For staining and visualization of whole skeletons, embryos were dissected and stained with alizarin red S and alcian blue 8GX (Sigma) as described [43].

3D- µCT image acquisitions
E17.5 embryos were collected, fixed in formalin, Embryos were imaged using X-ray radiation micro-CT (SkyScan 1072), a microfocuss X-ray tube was used as a source (50 kv, 173 µA). The specimen was mounted on a turntable that could be shifted automatically by 180° with a rotation step of 0.45° in the axial direction. The “SkyScan 1072” system provides an image pixel size of 18.88 µm. X-ray images were transformed by NRecon software (skyscan).

Whole-mount in situ hybridization
In situ hybridization was carried out as described [44]. Two to five embryos were used for each marker and stage. Antisense probes used during this study were Pax3, Pax1, Pax3, Myf5 (provided by S. Tajbakhsh). Cre riboprobe was generated from PCR amplification of Cre cDNA by using specific primer for the Cre flanked by T7 and T3 promoters: Cre-T3Forward, 5’-GAGAATTAACCCCTACTAAAGGGGACATGTTCAGG-3’; Cre-T7-Reverse, 5’-GAGTAATACGACTCACTATAGGGTTATTTACATTGGTCCAGCAG-3’.

Photographs of whole-mount stained embryos were taken with the SMZ 1500 stereomicroscope (Nikon) with the AxioCam MRc camera (Zeiss).

Cell death analysis
Cell death was detected by incubating whole embryos in 5 µM Lysotracker Red (Invitrogen L7523) in Hank’s balanced salt solution for 50 min at 37°C in 5% CO2 in air. Embryos were then washed in phosphate buffered saline (PBS), dehydrated in methanol, and cleared in 1:2 benzyl alcohol: benzyl benzoate. Photographs of stained embryos were taken with an inverted microscope Zeiss Axiovert 200M with a Zeiss apotome system controlled by the Zeiss aXiovision 4.4 software. The CCD camera was used as a Roper Scientific Coolsnap HQ. Immunohistochemistry using antibody against activated-caspase3 (Ap175; Cell Signalling) was used according to the manufacturer’s instructions. Whole-mount immunohistochemistry was performed on E7.5 embryos using antibody against human activated caspase-3 (1:200; Pharmingen) as described [45].

X-Gal staining
After fixation of embryos, β-galactosidase expression was visualized by staining with 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal for embryos; Life Technologies).

Supporting Information
Figure S1 Spinal cord and kidney anomalies in Nle

mu
ko

mutant embryos. A. Hematoxylín-eosín staining of histological section of E14.5 control (upper panel) and Nle

mu
ko

(lower panel) embryos. On sagittal sections, fused and rare cartilage primordium of spinal column is indicated (arrowheads). Edema (asterisks) and dilated central canal of the spinal cord (sp) are clearly visible. Kidneys (arrow) are indicated in the control embryos and in the Nle

mu
ko

(TIF)

Figure S2 Alcian blue/alizarin red S double staining of the skeleton of E18.5 embryos. A. Whole skeleton staining of Nle

mu
ko

(left) and control (right) embryos. B. Magnification on the forelimb and humerus. Long bones of Nle

mu
ko

embryos are smaller and present a significant delay of mineralization.

(TIF)

Figure S3 Expression pattern of markers for somitic lineages in E9.5 control and Nle

mu
ko

embryos. Whole-mount in situ hybridizations were performed with Pax1, Pax3, Myf5 riboprobes (n = 4 control, n = 3 Nle

mu
ko

mutant embryos for Pax1, n = 4 control, n = 5 Nle

mu
ko

mutant embryos for Pax3, n = 4 control, n = 4 Nle

mu
ko

mutant embryos for Myf5, n = 3 control, n = 6 Nle

mu
ko

mutant embryos for Myf5. No difference between Nle

mu
ko

and control embryos was observed for any marker tested.

(TIF)

Figure S4 Analysis of apoptosis in E9.5 control and Nle

mu
ko

embryos. Immunostaining for the active form of caspase3 protein at E9.5 in control (left) and Nle

mu
ko

(right) embryos are shown. Embryos were embedded in agarose before being embedded in paraffin. Serial transverse sections are shown. In control embryos, apoptotic cells (arrowhead) were observed in the epidermis, the neural tube and otic pit. In Nle

mu
ko

embryos, an abnormally high number of apoptotic cells was observed in the neural tube caudally to
the forelimb and in the epithelial and mature somites. Black arrowheads indicate upregulated apoptosis and red arrowheads indicate normal developmental apoptosis (n = 3 mutants and n = 4 controls including a *Meox2Cre* embryo). ia: branchial arch, ec: caudal region of embryo, he: heart, ne: neuroepithelium, nt: neural tube, ot: otic vesicle, op: optic vesicle, so: somite.

Table S1 Number of mutant embryos obtained from crosses between *Nle1* ^floxed/floxed^ and *Nle1* ^Cre/+^; *Sox2* ^Cre/+^ mice at various embryonic stages.

Movie S1 MicroCT three-dimensional images of E17.5 control embryo.

Movie S2 MicroCT three-dimensional images of E17.5 *Nle1* ^mcKO^ embryo showing absence of ribs and vertebral column.

Movie S3 Cell death analysis in E9.5 control embryo. Representative image of cell death status in one E9.5 control embryo. Normal developmental apoptosis is observed in the head.

Movie S4 Cell death analysis in E9.5 *Nle1* ^mcKO^ embryo. Representative image of cell death status in one E9.5 mutant embryo. Apoptosis in the head was similar as control embryos, whereas a severe increase in apoptosis is observed in the neural tube and the entire somites.

References

