
HAL Id: pasteur-00743086
https://pasteur.hal.science/pasteur-00743086

Submitted on 18 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling the allosteric modulation of CCR5 function by
Maraviroc

Bernard Lagane, Javier Garcia-Perez, Esther Kellenberger

To cite this version:
Bernard Lagane, Javier Garcia-Perez, Esther Kellenberger. Modeling the allosteric modulation of
CCR5 function by Maraviroc. Drug Discovery Today: Technologies, 2012, 10 (2), pp.e297-e305.
�10.1016/j.ddtec.2012.07.011�. �pasteur-00743086�

https://pasteur.hal.science/pasteur-00743086
https://hal.archives-ouvertes.fr


1 
 

MODELING THE ALLOSTERIC MODULATION OF CCR5  

FUNCTION BY MARAVIROC 

 

 

 

Bernard Lagane
1
, Javier Garcia-Perez

2
, and Esther Kellenberger

3,* 

1
 INSERM U819, Unité de Pathogénie Virale, Institut Pasteur, 75724 Paris cedex 15, France, 

2
 Insituto de Salud Carlos III, 28220-Majadahonda, Madrid, Spain,  

and 
3
 Université de Strasbourg UMR7200,  Illkirch, France 

 

 

 

* 
Address correspondence to:  

Esther Kellenberger; MEDALIS Drug Discovery Center, Faculté de Pharmacie, 74 route du 

Rhin, 67400 Illkirch, France,  Tel.: 33368854221 ; Fax: 33368854310; E-mail: 

ekellen@unistra.fr  

 

 

 

 

 

 

Abstract 

 

Maraviroc is a non-peptidic, low molecular weight CC chemokine receptor 5 (CCR5) ligand 

that has recently been marketed for the treatment of HIV infected individuals. This review 

discusses recent molecular modeling studies of CCR5 by homology to CXC chemokine 

receptor 4, their contribution to the understanding of the allosteric mode of action of the 

inhibitor and their potential for the development of future drugs with improved efficiency and 

preservation of CCR5 biological functions.    
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A. Introduction  

 

CC Chemokine Receptor 5 (CCR5) belongs to the wide family of G-protein coupled receptors 

(GPCRs) composed of seven membrane spanning helices that are connected by extracellular 

and intracellular loops (ECL and ICL), an extracellular N-terminal domain and a cytosolic C-

terminal tail. CCR5 is a receptor for small chemotactic cytokines called CC chemokines 

including CCL-3, -4, -5 and -8 that participates in innate immunity and in the initiation of 

adaptive immune responses. [1] CCR5 also serves as a CD4 coreceptor for the entry of R5-

tropic strains of HIV into activated CD4
+
 T-lymphocytes and macrophages. The receptor 

works by binding the CD4-bound form of the viral envelope glycoprotein gp120, allowing the 

target cell and viral membranes to come closer and to fuse.  Its crucial role in HIV infection is 

exemplified by individuals homozygous for the CCR532 allele who do not express 

functional CCR5 and are highly protected against HIV. [2] This has raised the hypothesis that 

blocking of the receptor could represent a feasible approach to fight HIV. Over the last years 

however, it has become increasingly evident from studies in mouse models that the lack of 

CCR5 results in impaired host defenses against infection by a variety of pathogens. [3] 

Epidemiologic studies also associated homozygosity for the CCR5-32 allele with increased 

severity of clinical outcomes in infections with flaviviruses (West Nile virus and Tickborne 

encephalitis virus), indicating that some of the functions of CCR5 may not be dispensable and 

raising concerns about the safety of long-term inhibition of the receptor in HIV infection. [4] 

This review sheds light on emerging low molecular weight, allosteric regulators of CCR5 that 

have the potential to inhibit HIV entry while preserving other receptor functions and presents 

advances on molecular modeling approaches that help explain how these molecules act and 

may sustain further development of inhibitors. Our recent work on Maraviroc (MVC) binding 
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to a CCR5 model built by homology to the crystal structure of human CXC chemokine 

receptor 4 (CXCR4) is presented as a case study. [5] 

 

B. Allosteric regulation of CCR5 by non peptidic, low molecular weight 

compounds as promising long term anti-HIV therapy  

 

Approaches to treat AIDS using CCR5 as a target include so far gene therapy strategies that 

aim at interfering with the expression of the receptor in patient’s cells [6] and blockade of the 

receptor by ligands such as monoclonal antibodies [7] or modified chemokine derivatives. [8] 

These ligands are orthosteric inhibitors of gp120 binding to CCR5 because they attach to 

extracellular domains of the coreceptor, which the viral glycoprotein also binds to. 

Chemokines with agonist activity in addition remove CCR5 from the cell surface by 

promoting internalization of the receptor and in some cases by inhibition of its recycling. 

[9,10] A third class of CCR5 ligands acting as HIV entry inhibitors comprises structurally 

diverse non-peptidic, low molecular weight compounds (Fig. 1): TAK-779, the first inhibitor 

discovered by Takeda Pharmaceuticals, [11] its derivative TAK-652, [12] Aplaviroc (APL) 

(AK602 or GW873140) licensed by GlaxoSmithKline and whose development was 

discontinued because of hepatic toxicity in clinical trials, [13] Schering-Plough’s Vicriviroc 

(SCH-D or SCH-417690) that continues to be evaluated in clinical trials [14] and Pfizer’s 

Maraviroc (MVC) that is used for the treatment of patients who are infected with R5-HIV 

only. [15] These compounds prevent gp120 from binding to CCR5 but the mechanism 

involved differs from that of orthosteric ligands. Indeed, in recent radioligand dissociation 

kinetic experiments we demonstrated that MVC and TAK779 accelerate the dissociation rate 

of radiolabeled CCL3 or gp120-soluble CD4 complexes from CCR5, clearly indicating that 

the inhibitors could interact with the receptor occupied by either of both radioligands. These 
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experiments thus suggested that TAK779 and MVC bind to allosteric sites of CCR5 (that is, 

domains of CCR5 that are separate from the orthosteric binding site, which chemokines and 

gp120 bind to) and, while doing so, modify the receptor conformation in such a way that the 

receptor is no longer accessible to orthosteric ligands or the virus itself. [16] However, 

although MVC binds CCR5 with comparable affinity and dissociates CCR5 radioligands less 

efficiently, as compared to TAK-779, we also found that it was 100-fold more potent for 

inhibiting HIV infection. This suggests that MVC binding to CCR5 not only acts by blocking 

the viral envelope glycoprotein binding to target cells but also alters other stages of HIV-1 

entry and infection. Other examples of differential effects of allosteric inhibitors on different 

CCR5 functions have been reported in the literature. For example, while TAK-779 more 

potently inhibits CCL3L1-induced internalization of CCR5 than HIV infection, the reverse is 

observed for TAK-652. [17] Similarly, some viruses are resistant to some inhibitors while 

retaining susceptibility to others. [18-20] These data are intimately related to the so-called 

“probe dependence” feature of allosteric inhibitors, which, in contrast to orthosteric 

antagonists, allows them to modulate different receptor functions or the binding of different 

orthosteric ligands to different extents ranging from inhibition to enhancement. [21,22] As 

another example, APL inhibits HIV infection at concentrations that permit CCL5 binding to 

the receptor and CCL5-mediated chemotaxis and internalization, [13] but prevent the binding 

of CCL3. [23] Thus, CCR5 allosteric inhibitors represent promising therapeutic tools because 

they can silence some functions of the receptor while preserving others. In this sense, the 

functional design of small molecule allosteric regulators of CCR5 could offer the unique 

possibility to inhibit HIV infection while preserving the immune functions of the receptor.  

The experimental structure of CCR5 is not yet available. Modeling techniques nevertheless 

could predict it and propose ligand binding modes for a molecular interpretation of allostery 

and the prospective design of new compounds.   
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C. Modeling the three-dimensional structure of CCR5 

 

Since 2000, many models of CCR5 have been proposed by different research groups. They 

were built by homology to template GPCRs, so that progresses made in modeling reflect the 

breakthroughs achieved in solving GPCR structures by X-ray crystallography. [24] For eleven 

years, CCR5 models were based on distant GPCR homologs, mainly bovine rhodopsin, but 

also human β2 adrenergic receptor or human adenosine A2A receptor. The requisites for 

reliable modeling of CCR5 from rhodopsin, from sequence alignment guided by hydropathy-

profile and the presence of rhodopsin-like GPCR motifs to the incorporation of angle and 

distance restraints during the refinement of coordinates by molecular mechanics are well 

described in reference [25]. Rhodopsin-based CCR5 models represent low-accuracy models 

whose reliability depends on the level of knowledge-based constraints introduced upon 

modeling. In any cases, the seven transmembrane domains (7TM) are the most consistent part 

of the model, since their fold is common to all GPCR structures. [24,26] 

In 2011 was released the first structure of a peptide GPCR, namely human CXC chemokine 

receptor 4 (CXCR4). [27] CXCR4 is a close homolog of human CCR5. There is 29% of 

sequence identity between the two receptors, with up to 53.3% of identical residues in 

individual transmembrane domain (TM). The structure of CXCR4 revealed structural 

distinctive characteristics in the length and the straightness of helices. The extracellular end of 

helix 2 (TM2) especially undergoes a ~120° rotation in CXCR4 as compared to rhodopsin. 

This distortion is due to the TxP motif conserved across chemokine receptors. [28] The intra– 

and extra-cellular domains of CXCR4 are well defined in the crystal structure. They differ 

from those observed in other GPCRs although they include common secondary structure 

elements. [29] For example, the second extracellular loop (ECL2) adopts a β-hairpin 



6 
 

conformation in both CXCR4 and rhodopsin, but is oriented outward in CXCR4 whereas it 

positions deeper into the 7TM bundle in rhodopsin. Last, a parallel and symmetric dimeric 

assembly of the receptors was observed in all five CXCR4 crystal structures presented in 

reference [27], thereby reinforcing the general belief that the chemokine receptors exist as 

dimeric entities. 

Only few models of CCR5 obtained by homology to CXCR4 are reported in the literature. 

[5,30,31] The model we proposed in 2011 [5] has afforded the precise definition of the three-

dimensional structure for most of the receptor, especially the 7TM bundle, the extracellular 

loops and a portion of the N-terminal domain. It has provided details on the organization of 

the receptor, revealing networks of aromatic residues that bridge the transmembrane helices 

and connect the 7TM bundle to the extracellular loops. The model also well paired the 

hydrogen-bonding groups of the few polar residues present in the hydrophobic 7TM bundle. 

The model delineates a wide, deep and open pocket in the 7TM bundle for the binding of 

TAK-779, APL, MVC and other small inhibitors (reviewed in [32]). Using docking, we 

demonstrated that on the whole the pocket better accommodates true CCR5-binders than their 

decoys (i.e. similar compounds with no affinity for the receptor). For the sake of comparison, 

although the rhodopsin-based models are sufficient to describe some of the structural 

determinants for ligand binding (e.g., the carboxylate group of Glu283 - Glu7.39 according to 

Ballesteros-Weinstein numbering scheme- which is critical for the binding to CCR5 of all 

inhibitors but TAK-779, is available to establish an ionic bond with the central positively 

charged nitrogen of inhibitors), they fail to discriminate true binders from decoys upon 

structure-based virtual screening as well as CXCR4-based model, unless the transmembrane 

cavity is refined to capture the structural features important for ligand binding. [33] For 

example, Trp86 (Trp2.60) in TM2, which is conserved across CC chemokine receptors, 

contributes to the binding of chemokines, gp120 and MVC. [5,34] The side chain of Trp86 is 
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directed towards the cavity in CXCR4-based models, whereas it faces the lipid bilayer in 

rhodopsin-based models unless a kink is enforced in helix 2 during the modeling procedure.  

The modeling approaches to CCR5 structure as well as the predictive power of the different 

models are summarized in Table 1. If only the CXCR4-based model provides solid structural 

clues for the molecular understanding of allostery, the rhodopsin-based models have proven 

their particular applicability in drug discovery, especially with identification of non peptidic 

agonists [35] and the optimisation of allosteric CCR5 modulators. [31,36] Similarly, it was 

recently demonstrated that models of the β2 adrenergic receptor can perform as well as the 

crystal structure in structure-based virtual screening. [37]  

 

D. Modeling ligand binding to CCR5 helps understanding allostery 

 

The next step towards the understanding of allostery is the mapping on the receptor of the 

binding sites for orthosteric and allosteric ligands. Site-directed-mutagenesis (SDM) 

constitutes an invaluable tool to achieve this goal. The interpretation of SDM data is however 

not a trivial task. First of all some mutations can indirectly influence ligand binding. 

Similarly, robust controls are necessary to attest that changes in ligand binding do not result 

from misfolding. For example, the mutation of Trp248 (Trp6.48) in TM6 was shown to 

deteriorate the binding of ligands and also the receptor expression. [5] An additional level of 

complexity in assessing the effects of mutations on ligand binding depends on the choice of 

the receptor functional assay that is used as readout. Regarding the studies on the binding of 

allosteric compounds to CCR5, the different functional assays that have been developed so 

far include (i) direct binding experiments of tritiated forms of these compounds, (ii) 

inhibition of antibody or radiolabeled chemokine binding to CCR5, (iii) inhibition of cell-cell 

fusion or (iv) inhibition of HIV entry. Overall, while these assays produced reproducible and 
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consistent results, some differences have been reported depending on which receptor 

function was investigated. For instance, while we observed that the Y251A (Tyr6.51) 

mutation moderately affects MVC in its ability to displace 
125

I-CCL3 binding to CCR5, [5] 

more dramatic effects were reported using fusion inhibition assays. [32] Similarly, the 

replacement of Thr195 (Thr5.39) was found to increase by 12-fold the IC50 values for 

inhibition of 
125

I-CCL5 binding to CCR5 by APL [38] but did not change the effect of the 

inhibitor on fusion. [32] The discrepancies can be explained by the fact that the different 

functional assays can have different sensitivities. [32] Alternatively, some mutations could 

have differential effects on allosteric inhibition of different functions of CCR5, in agreement 

with the “probe-dependent” nature of allosteric inhibitors here above discussed. For those 

reasons, comparing SDM data issued from different functional assays reported in the 

literature is an obligatory step to achieve accurate pictures of ligand binding sites into 

receptors.  

The analysis of the SDM results is greatly facilitated by accounting for structural data. The 

three-dimensional structure of CCR5 built by homology to CXCR4 especially discriminated 

between residues that are involved in the receptor folding (the tightly-packed ones) and those 

that directly interact with orthosteric or allosteric ligands (the surface-exposed ones). The 

above mentioned Trp248 (Trp6.48) is a typical example of a key structural residue. It 

constitutes a hub of the network of aromatic residues in the 7TM bundle, so that its 

replacement by any other amino acid has important structural and functional consequences. 

Similarly, a possible role of Ile198 (Ile5.42) in the dynamics of the receptor was described in 

reference [5]. This residue is located in TM5 one helix turn upstream of a hinge region 

defined by a GxxxP motif, which was locked by a thermostabilizing mutation in the CXCR4 

variant used for crystallisation. [27]  



9 
 

Altogether, SDM and three-dimensional data provided an accurate and credible mapping of 

ligand binding sites: the CCR5 chemokine CCL3 and the viral glycoprotein gp120 bind to 

extracellular domains of the receptor, especially ECL2, while MVC inserts in the receptor 

7TM bundle. Using docking experiments, we could further define the binding sites and tested 

the simultaneous binding of orthosteric and allosteric ligands. [5]  We proposed a model of 

interaction between CCR5 and CCL3 (or gp120) by performing manually the rigid-body 

docking of the orthosteric ligand into the receptor in order to replicate the interaction mode 

that was observed in the crystallographic structure of the complex between CXCR4 and the 

peptide antagonist CVX15,[27] i.e. hydrogen bonds were established between the ECL2 of 

CCR5 and a β-sheet in CCL3 (or the V3 loop in gp120) to form a single β-sheet from the β-

strands of the two molecular partners. Experiments of automatic docking of MVC into CCR5 

yielded multiple poses for the inhibitor that roughly delimit three different sites, yet 

overlapping, in the transmembrane pocket: one deeply buried (site 3 in reference [5]), an 

upper one between helices 1, 2, 3 and 7 (site 1) and an upper one between helices 3, 5, 6 and 

7 (site 2) (Fig. 2). The area common to sites 1 and 3 corresponds to the binding site of small 

molecule antagonist It1 in CXCR4. [27]  Interestingly, the modeled complex between CCR5 

and either gp120 or CCL3 leaves room for MVC to access the 7TM bundle of the receptor 

between helices 1, 2, 3 and 7 (Fig. 3), thereby adding to the understanding of our 

experimental data that MVC could promote dissociation of either 
125

I-CCL3 or 
35

S-gp120 

prebound to CCR5. [16] Interestingly, the dose-dependent experiments of MVC-induced 

dissociation of radioliogands from CCR5 suggested that ligand-occupied CCR5 has a lower 

affinity for the inhibitor than the free receptor, consistent with the fact that allosteric 

interactions are reciprocal (i.e. the radioligands are expected to modulate the binding of 

MVC similarly as MVC modulates that of the radioligands). [16] In this context, MVC could 

move from the low affinity site to another site of higher affinity that is accessible only when 
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the receptor is free (for example, MVC could theoretically pass from the superficial site 1 to 

the deepest site 3 by a simple translation without necessity of conformational changes for the 

ligand adaptation to the two sites). Alternatively, the upper site could shift from a MVC-low 

affinity state to a high-affinity state once the radioligand is dissociated. Once bound with 

high affinity to CCR5, MVC may prevent efficient binding of orthosteric ligands to the 

receptor probably by perturbing TM-ECL2 interactions. [5]     

 

E. Perspective: one step closer towards a complete picture of the system 

 

Many studies were undertaken during the last twelve years to understand the mode of action 

of non-peptidic, small molecules inhibiting CCR5. SDM and homology modeling from the 

crystal structure of CXCR4 added to the comprehension of the molecular determinants in 

CCR5 which participate in allosteric inhibition of the receptor by MVC. Such a knowledge 

should prove useful in designing future allosteric compounds preserving important CCR5 

functions in immunity while inhibiting HIV and devoid of adverse effects on health. [31] 

Noteworthy, a major complexity in studying structure/function relationships of CCR5 arises 

from the equilibrium between different conformational and homo- and hetero-oligomeric 

states of the receptor. [39,40] Its influence on the binding and the effects of allosteric 

inhibitors remains to date difficult to assess by molecular modeling approaches. For example, 

although our SDM and docking experiments have proposed distinct binding sites for MVC 

and orthosteric ligands, thus agreeing well with an allosteric mode of action for the inhibitor, 

the possibility cannot be ruled out that small molecule CCR5 inhibitors also transmit allosteric 

effects from one receptor to another in a CCR5 dimer, as recently suggested. [41] Similarly, 

evidences indicated that CCR5 undergoes regulations that are of allosteric nature once it is 

engaged in receptor homo- or hetero-dimers, [42] but to what extent this influences the 

binding of small allosteric ligands to the receptor and their efficiency as HIV entry inhibitors 
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has remained poorly studied. Yet, in support of such a possibility, a role for CCR5 

conformational state in the binding of small molecule CCR5 inhibitors was actually suggested 

by us and others. [16,43] Finally, it is not known yet if disruption of dimer formation may 

take part in the inhibitory process of small molecule CCR5 ligands. Indeed, we recently 

described residues in the CCR5 putative dimer interface whose mutation abrogated gp120 

binding (and presumably HIV entry). [5] Designing molecules that would target this interface 

could help elucidate these critical issues regarding the contribution of receptor dimers in HIV 

entry and infection and their sensitivity to allosteric inhibitors. 
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Models 
Unbias, 

low accuracy 
[5], [44]

 

Biased, 

fair accuracy 
[5], [31], [32]

 

Unbiased, 

good  accuracy 
[5], [30], [31]

 

Modeling approaches     

Template for TMs  rhodopsin* rhodopsin CXCR4 

Template for loops PDB-derived library of 

loops or no loops 

PDB-derived library of loops 

or no loops 

CXCR4 

Refinement of model    

The TxP motif  / kink in helix 2 / 

Inter-residue constraints derived from 

experimental data 
/ e.g. vicinity of the side chains 

of Phe2.59 and Leu3.28 [28] 
/ 

Customization of the 7TM    

Selection of rotamers / e.g. carboxylate of Glu7.39 / 

Shaping the pocket according to the presumed 

active conformation of known binders 
/ available for inter-molecular 

ionic bond 
/ 

Applications    

Identification of residues in the orthosteric site  poor poor fair 

Identification of residues in the allosteric site  fair good good 

Identification of networks of intra-molecular 

interactions  

fair partial good 

Performance in virtual screening by docking 

[5] 

   

- Sensitivity: retrieval of CCR5-binders fair good good 

- Specificity: discard of decoys fair fair good 

Docking of ligands** poor fair good 

Table 1: Approaches to CCR5 modeling and predictive power of models.  

* Models of CCR5 were also built from the coordinates of β2 adrenergic and adenosine α2A receptors, but they have a lower predictive power 

than the ones based on bovine rhodopsin. 

**Ability to generate reasonable poses, which are not necessarily correctly ranked by scoring functions  
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Figure 1: Chemical structure of CCR5 inhibitors. 

At physiological pH, the four compounds are positively charged. They however contain 

different chemical scaffolds and do not define a simple unique pharmacophore or a 

consensual three-dimensional shape. [45] 

  

TAK-779 Vicriviroc (SCH-D) 

Maraviroc (MVC) Aplaviroc (APL)
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Figure 2: Possible binding modes for MVC in the 7TM bundle of CCR5  

From top to bottom are displayed the crystal structure of CXCR4 (grey ribbon) in complex 

with the antagonist It1 (carbon atoms colored in green), and representative docked poses of 

MVC into the CXCR4-based model of CCR5 (capped sticks) in site 1 (MVC carbon atoms 

colored in light blue), in site 3 (MVC carbon atoms colored in magenta) and in site 2 (MVC 
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carbon atoms colored in orange). The side chains in CCR5 binding sites are labeled 

according to the Ballesteros-Weinstein numbering scheme (except for Asn24 in the N-

terminal domain, and for Ser180 and Phe182 in ECL2). For the sake of clarity, It1 position is 

shown in all views. The panel B reflects an orientation orthogonal to the view in panel A. All 

the images are at the same scale   
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Figure 3: Complex between CCR5, Gp120 and MVC.  

Proteins are either represented by their solvent-excluded molecular surface (A,C) or by their 

secondary structures displayed as ribbons (B,D). The side chains of residues discussed in the 

text are displayed as capped sticks. MVC is either represented by its solvent-excluded 

surface (A,C) and by capped sticks (B,D, heavy atoms only). Two different poses of MVC 

are shown. The panels A and B reflect the same orientation. The panels C and D reflect an 

orientation orthogonal to the view in panels A and B. All the panels are at the same scale. 
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