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trypanosomatidae
Antonio Palmeri1†, Pier Federico Gherardini1*†, Polina Tsigankov2, Gabriele Ausiello1, Gerald F Späth3,

Dan Zilberstein2 and Manuela Helmer-Citterich1

Abstract

Background: Protein phosphorylation modulates protein function in organisms at all levels of complexity. Parasites

of the Leishmania genus undergo various developmental transitions in their life cycle triggered by changes in the

environment. The molecular mechanisms that these organisms use to process and integrate these external cues

are largely unknown. However Leishmania lacks transcription factors, therefore most regulatory processes may

occur at a post-translational level and phosphorylation has recently been demonstrated to be an important player

in this process. Experimental identification of phosphorylation sites is a time-consuming task. Moreover some sites

could be missed due to the highly dynamic nature of this process or to difficulties in phospho-peptide

enrichment.

Results: Here we present PhosTryp, a phosphorylation site predictor specific for trypansomatids. This method uses

an SVM-based approach and has been trained with recent Leishmania phosphosproteomics data. PhosTryp

achieved a 17% improvement in prediction performance compared with Netphos, a non organism-specific

predictor. The analysis of the peptides correctly predicted by our method but missed by Netphos demonstrates

that PhosTryp captures Leishmania-specific phosphorylation features. More specifically our results show that

Leishmania kinases have sequence specificities which are different from their counterparts in higher eukaryotes.

Consequently we were able to propose two possible Leishmania-specific phosphorylation motifs.

We further demonstrate that this improvement in performance extends to the related trypanosomatids

Trypanosoma brucei and Trypanosoma cruzi. Finally, in order to maximize the usefulness of PhosTryp, we trained a

predictor combining all the peptides from L. infantum, T. brucei and T. cruzi.

Conclusions: Our work demonstrates that training on organism-specific data results in an improvement that

extends to related species. PhosTryp is freely available at http://phostryp.bio.uniroma2.it

Background
Protein phosphorylation is the most abundant post-

translational modification in both prokaryotic and

eukaryotic organisms. This process is regulated through

the enzymatic activities of protein kinases and phospha-

tases. Phosphorylation occurs predominantly on serine,

threonine, and tyrosine residues, and has been shown to

be a key regulatory switch in a variety of cellular

processes, ranging from cell cycle and differentiation to

motility and learning [1,2]. In particular Leishmania

lacks transcription factors and phosphorylation has been

proposed as an important regulatory mechanism [3].

Recent advances in mass spectrometry enabled the

identification of a large number of phosphorylation sites

in most eukaryotes (see [4,5] for a review). Information

on the phosphoproteome of parasitic protozoa is also

starting to be available. In-depth analyses of the phos-

phoproteome of parasitic protozoa has only recently

been initiated in African Trypanosomes and Leishmania

[6-10].
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These studies reported phosphorylation sites whose

sequence did not match known kinase recognition

motifs, e.g. 25% of the sites identified by Nett et al. [6]

were not recognized by either Scansite [11] or Netphos

[12]. Moreover the data reveal the presence of phos-

phorylation events not conserved in orthologous pro-

teins. For instance Hem et al. [7] showed that a number

of chaperones and heat-shock proteins which are very

conserved from Leishmania to human possess parasite-

specific phosphorylation sites.

These findings implicate that new and more family- or

genera-specific prediction tools are required. Here we

use the results of phosphoproteomic experiments in

Leishmania to develop a novel method that improves P-

site prediction in Leishmania and other organisms of

the trypanosomatidae group.

The complete spectrum of protein phosphorylation is

difficult to assess due to the low stoichiometry of many

phosphorylation events and the highly dynamic nature

of this modification. Thus the bioinformatic identifica-

tion of putative phosphorylation sites and the subse-

quent analysis of these sites by biochemical assays may

be an important alternative strategy to discover new

phosphorylation events.

Phosphorylation sites prediction tools are usually

grouped into two categories: generic and kinase-specific.

The first category of prediction tools indicates the phos-

phorylation state of the site, without making any

assumption about the protein kinase responsible for the

phosphorylation. Methods in the latter category aim to

infer which kinase family is responsible for the phos-

phorylation event. This information is extremely useful

for the elucidation of signaling networks, however

experimental data linking a protein kinase to its sub-

strate is available only for a limited number of sites

[13,14].

Netphos [12] was the first predictor to use neural net-

works in 1999, outperforming phosphorylation site iden-

tification based on sequence motifs alone. Besides the

primary sequence, the structural context is also impor-

tant in determining whether a site is phosphorylated or

not [15,16]. Indeed several predictors such as DISPHOS

[17] and PHOSIDA [18] include the predicted structural

characteristics of the putative phosphorylation sites.

Protein kinase-specific predictors include NetphosK

[19], Scansite [11], KinasePhos [20], PredPhospho [21],

GPS [22], pkaPS [23] and PrediKin [24]. NetphosK is

the extension of the method Netphos to kinase-specific

predictions. Scansite uses Position Specific Scoring

Matrices (PSSMs) for 62 different kinase phosphoryla-

tion motifs. KinasePhos and PredPhospho use HMMER

profiles and Support Vector Machines (SVM) respec-

tively. In both cases the prediction models are trained

on sets of peptides phosphorylated by protein kinases of

the same family. GPS performs profile searches with

short motifs instead of using a machine learning

approach. In order to achieve a higher coverage of

known phosphorylation sites, the algorithm reduces the

strength of the profiles, thus increasing the false positive

predictions. PkaPS has been developed to predict pro-

tein kinase A-specific phosphorylation sites, based on an

extensive analysis of the PKA motifs, thus achieving the

best results for these particular predictions. PrediKin is

based on the analysis of the contact positions between

kinases and substrates in proteins of known structure.

The authors were able to associate the identification of

specific kinase residues with a corresponding preference

in the sequence of the substrate.

Moreover a number of organism-specific prediction

systems have been developed in recent years [25-28].

These methods aim at increasing the prediction accu-

racy by training on peptides derived from single organ-

isms. This approach makes it possible to capture

organism-specific differences in known phosphorylation

motifs and to reduce false positives arising from kinase

families that are under-represented in the organism of

interest. Following this line of reasoning, the aim of this

work is to use Leishmania phosphoproteomics data to

develop a tool that improves phosphorylation site pre-

diction in trypanosomatids.

Results and discussion
SVM features

The dataset used in this work consists of 1176 phos-

phorylation sites (966 on serine and 210 on threonine)

mapping to 482 phosphoproteins. The sites were identi-

fied by mass spectrometry after enrichment on a tita-

nium dioxide column. A portion of this data has already

been published [7].

PhosTryp uses an SVM-based approach to predict

phosphorylation sites; it was therefore necessary to

choose a number of features that describe the sites and

were used as inputs to the predictor. The features we

included in the SVM are:

∙ the sequence of the peptide

∙ a residue composition feature

∙ the secondary structure and disorder predictions for

the site.

The sequence of the peptide is clearly the most

important characteristic as shown in previous works

[18,29]. We considered a window of +/- 5 positions

around the phosphorylation site. An important point is

how the sequence is encoded, i.e. transformed in vari-

ables that can be used as input to the SVM. We tried

two different encodings. The first one was the standard

orthogonal binary encoding that essentially considers

each position as a collection of 20, mutually exclusive,

binary variables, each one representing the presence of a
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specific amino acid in that position. We also used a dif-

ferent encoding based on the values in a substitution

matrix (similar to the one used in [30]). This encoding

should better represent the fact that a substitution in a

position of the peptide could have little influence on the

probability of phosphorylation if the residues have simi-

lar physicochemical properties.

Moreover we reasoned that in some cases residues

close to the phosphorylation site might have an effect

independent of their position. To this end we included a

feature that depends on the enrichment of each residue

in a +/-2 window around phosphorylation sites with

respect to non-phosphorylated serine and threonine

residues.

Besides these sequence-dependent features we also

included two descriptors of the structural context of the

site. Indeed phosphorylation sites are usually located in

regions of the protein which are flexible and exposed to

the solvent in order to facilitate the interaction with

protein kinases [15]. The analysis of our dataset con-

firmed that phosphorylation sites have a preference for

disordered regions and segments of the proteins that

have a coiled structure. Indeed 968 (83%) of the positive

sites lie in a region predicted as coil compared with 780

(66%) of the negatives. The preference for disorderd

regions is also apparent: 521 (44%) of the positives are

predicted to be disorderd compared with 362 (30%) of

the negatives. The significance of these values was con-

firmed by performing a Chi-square test on the two con-

tingency tables which yielded a p-value < 2e-16 for coil

preference and a p-value < 8e-12 for disorder prefer-

ence. Therefore we added two binary variables describ-

ing whether the sites lie in a disordered region or in a

coil.

Training and testing the SVM

As described in the methods we experimented with var-

ious combinations of features, building 4 different

SVMs. We used 80% of data as training and 20% as test.

Both the positive and the negative peptides in the train-

ing set were clustered at the 50% sequence identity level

to reduce the redundancy. Moreover we removed the

peptides in the test set that had more than 50% identity

with one of the peptides used for training. The training

data was used to optimize each SVM by performing a

10-fold cross validation for each combination of the

gamma, cost and epsilon parameters. The results for

each SVM are displayed in table 1.

The SVM using only the sequence in binary encoding

and the one using the PAM30 encoding and including

all the features achieved the same performance on the

training set (AUC = 0.73). However the results on the

test set indicate that the latter has a superior perfor-

mance (AUC = 0.74 ± 0.01) and therefore was used

throughout the work. However all the SVMs reached

essentially comparable performance levels. The final

score threshold used for the prediction is 0.54 and was

chosen as the one that maximizes the MCC.

Comparison with Netphos and NetphosK

We compared PhosTryp with Netphos, that provides

generic predictions, and with NetphosK that returns a

score for each kinase family, according to the likelihood

that kinases from that family are responsible for the

phosphorylation. Since NetphosK predictions are kinase-

specific, we considered as positive predictions the sites

that are predicted to be phosphorylated by at least one

kinase family.

We tested Netphos and NetphosK on the same non-

redundant test set used for PhosTryp, obtaining an

AUC 0.57 ± 0.01 for both methods (see table 2). The

performance of these programs is therefore markedly

inferior to the one obtained by PhosTryp (0.74 ± 0.01).

These values represent the average and standard error

of 100 bootstrap replicates (see Methods) and therefore

give a reliable picture of the performance differences

between the three methods.

Figure 1 displays the Receiver operating characteristic

(ROC) curves corresponding to the application of each

method to the non-redundant test set. PhosTryp there-

fore represents a 17% performance improvement over

non organism-specifc methods for the prediction of

phosphorylation sites in Leishmania.

PhosTryp captures phosphorylation features specific to

Leishmania

The improved performance of PhosTryp could be

explained by differences in sequence specificity between

the Leishmania kinases and the kinases of other, better

characterized, organisms. To investigate this possibility

Table 1 Results obtained with four different SVMs with

different sequence encoding and features

Sequence
encoding

Features AUC
Training

AUC Test non-
red

binary all 0,714 ± 0,060 0,719 ± 0,006

binary sequence
only

0,729 ± 0,039 0,706 ± 0,007

PAM30 all 0,729 ± 0,051 0,737 ± 0,007

PAM30 sequence
only

0,724 ± 0,021 0,724 ± 0,007

Table 2 Performance of Nepthos and NetphosK on the

Leishmania dataset

Method AUC Test non-red

Netphos 0,569 ± 0,008

NetphosK 0,572 ± 0,008
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we used NetPhorest [31], a collection of 125 sequence-

based classifiers that predicts which kinase group is

more likely to phosphorylate a given substrate. The out-

put of NetPhorest is a score representing the probability

that a given kinase group phosphorylates the peptide

under analysis. In this analysis we only considered the

highest scoring kinase group for each peptide. Obviously

the more the sequence of the peptide is similar to the

consensus recognition sequence of the kinase the higher

the score. The majority of the data in NetPhorest comes

from experiments performed with human kinases and

kinases from model organisms. Therefore the score of a

peptide is a direct indication of the overlap between the

specificity of the kinase responsible for its phosphoryla-

tion and the specificity of kinases from well-character-

ized organisms.

We divided our phosphorylation sites in two groups:

the sites that were predicted correctly by PhosTryp and

Netphos, and the sites that were false negatives accord-

ing to Netphos and true positive for our method. The

latter group, which was missed by Netphos but not by

PhosTryp, could contain peptides with Leishmania-spe-

cific recognition sequences. Indeed the average NetPhor-

est score for this set of peptides is 0.24, lower than the

0.34 obtained with the peptides that were correctly pre-

dicted by our method and Netphos (p < 8.6e-16, Wil-

coxon test). These results further confirm that

PhosTryp, by training on Leishmania sequences, is able

to identify phosphorylation events that are specific to

this organism.

Search for new motifs in peptides predicted by PhosTryp

One possible explanation for the increased performance

of PhosTryp compared to Netphos and NetphosK is

that the dataset we used contains Leishmania-specific

phosphorylation motifs. Therefore we extracted all the

peptides which were correctly predicted by PhosTryp

but not by Netphos, to assess whether they contain

novel phosphorylation motifs. We used the motif-x ser-

ver with default parameters for motifs extraction [32]

using as background dataset the whole L. infantum pro-

teome. To further assess the novelty of the motifs we

visually compared the sequence logos with an extensive

collection of known kinase recognition logos [31].

This analysis resulted in the identification of two pos-

sible Leishmania-specific motifs for phosphorylation on

serine (see Figure 2). The first motif, NxS, has a 6.01

fold enrichment in the phosphopeptides dataset with

respect to the whole Leishmania proteome while the

second one, SF, has a 5.11 fold enrichment. All the

motifs have a significance <=10e-6. Clearly the biological

significance of these motifs should be experimentally

tested. However the enrichment in the phosphopeptides

dataset with respect to the proteome shows that these

are not simply residues over-represented by chance at

proximal positions.

Testing the predictor on other Trypanosomatids

We decided to investigate how the increase in perfor-

mance with respect to NetPhos and NetPhosK trans-

lated to trypansomatids other than Leishmania

infantum. To this end we collected two other sets of

phosphorylation sites from two recent phosphoproteo-

mics experiments performed in Trypanosoma cruzi [33]

and T. brucei [6]. For each set we collected, similarly to

what we did for L. infantum, an equal number of nega-

tive sites by a random sampling of the proteome. The T.

cruzi dataset comprised 356 peptides (half of which

positives and the other half negatives) while the T. bru-

cei dataset consisted of 3056 peptides.
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Figure 1 ROC curves obtained with PhosTryp, Netphos and

NetphosK on the Leishmania dataset. The curves represent the

average of 100 bootstrap replicates.

Figure 2 Novel motifs identified by the motif-x webserver on

the set of peptides correctly predicted by PhosTryp but not by

Netphos. The two motifs were identified in the Leishmania

infantum dataset. The left motif has a 6.01 fold enrichment in the

phosphopeptides dataset with respect to the whole Leishmania

proteome while the right one has a 5.11 fold enrichment. All the

motifs have a significance <=10e-6.
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We then used the SVM that had the best performance

on L. infantum to classify the peptides in the two new

datasets. We obtained an AUC of 0.74 on the T. cruzi

dataset and of 0.75 on T. brucei (Figures 3 and 4). Net-

phos had a lower performance of 0.68 and 0.65 respec-

tively. The results with NetphosK were even worse, with

an AUC of 0,56 on T. cruzi and 0.55 on T. brucei (see

table 3). These results show that PhosTryp, which was

trained on Leishmania infantum, performs better

than generic predictors when applied to this group of

organisms.

In order to verify whether this improvement was sim-

ply due to the identification of phosphorylation sites in

the orthologues of the proteins used for training, we

used the orthoMCL database [34] to exclude from this

test any sequence belonging to the same ortholog group

as one of the training proteins. Following this step there

is a 0.01 reduction in AUC on both the datasets from T.

cruzi and T. brucei. We can therefore conclude that

PhosTryp, after being trained on L. infantum, succeeded

in capturing phosphorylation features that are specific to

trypanosomatids.

Development of a predictor for organisms of the family

Trypanosomatidae

Our results show that a predictor trained on Leishma-

nia-specific data performs better than generic predictors

even when applied to the related organisms T. cruzi and

T. brucei. This is an important point because it shows

that it is possible to improve the prediction of phos-

phorylation sites in Trypanosomatidae using data speci-

fic to a single organism of this group. Clearly, since

phosphorylation data is available for T. cruzi and T. bru-

cei as well, the best strategy to develop a predictor spe-

cific for Trypanosomatidae is to also use these peptides

in the training. We therefore developed another predic-

tor that was trained on a combined dataset including

phosphopeptides from L infantum, T. cruzi and T. bru-

cei. As previously described for the Leishmania SVM we

split the data into 80% training and 20% test. Moreover

the peptides in the test set that had more than 50%

identity with one of the peptides used during the train-

ing were removed.
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Figure 3 ROC curves obtained with PhosTryp, Netphos and

NetphosK on the T. cruzi dataset.
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Figure 4 ROC curves obtained with PhosTryp, Netphos and

NetphosK on the T. brucei dataset.

Table 3 Comparison of the results obtained with

PhosTryp, Netphos and NetphosK on the T.brucei and

T. cruzi datasets

Method T. brucei T. cruzi

PhosTryp 0,753 0,741

Netphos 0,647 0,680

NetphosK 0,553 0,560

Table 4 Comparison of the results obtained with

PhosTryp trained on all organisms, Netphos and

NetphosK

Method L. infantum T. brucei T. cruzi All organisms

PhosTryp 0.746 ± 0.008 0.794 ± 0.005 0.788 ± 0.013 0.776 ± 0.004

Netphos 0.654 ± 0.007 0.646 ± 0.006 0.723 ± 0.014 0.659 ± 0.005

NetphosK 0.520 ± 0.010 0.585 ± 0.006 0.456 ± 0.019 0.557 ± 0.005
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On the test including the peptides from all the organ-

isms the method has an AUC of 0.78 (see Table 4). The

score threshold that maximizes the MCC is 0.49. We

also evaluated the performance on the test peptides spe-

cific to each organism. The sequences from L. infantum,

T. brucei and T. cruzi were predicted with an AUC of

0.75, 0.79, 0.79 respectively. As expected the perfor-

mance of the method increases when more data is used

for training. This predictor is the one used in the web-

server available at http://phostryp.bio.uniroma2.it.

Conclusions
We have described the development of PhosTryp, the

first phosphorylation site predictor specific for

trypanosomatids.

PhosTryp uses an SVM approach and was initially

trained on an extensive collection of 1176 phosphoryla-

tion sites derived from large-scale phosphoproteomics

experiments conducted in Leishmania. The predictor

was tested on a dataset that did not contain peptides

similar to those used during the training and obtained

an AUC of 0.74. This result represents a 17% improve-

ment over the results obtained with Netphos, a generic,

non organism-specific, predictor.

We investigated in more detail the peptides that are

correctly predicted by PhosTryp but not by Netphos.

This analysis showed that these peptides have, on aver-

age, significant differences in their kinase recognition

sequences when compared with phosphorylation sites

from more extensively studied model organisms. More-

over we identified two possible novel serine phosphory-

lation motifs specific for Leishmania. These results

show that our method performs better than generic pre-

dictors because it captures Leishmania-specific phos-

phorylation features.

We also verified that this perfomance improvement

extends to other organisms in the trypanosomatids

group. More specifically PhosTryp represents a 10% per-

formance improvement over Nepthos in the prediction

of T. brucei phosphorylation sites and a 6% improve-

ment when applied to data from T. cruzi.

These results show that it is possible to improve phos-

phorylation site prediction in trypanosomatids using data

specific to a single organism of this group. In order to

maximize the performance and usefulness of PhosTryp

we retrained the predictor combining the data from

L. infantum, T. cruzi and T. brucei. As expected this

combined predictor shows an increase in performance.

In conclusion our work highlights the usefulness of

developing predictors starting from species-specific data,

so as to capture features which are characteristic of a

given organism, or, such as in this case, group of organ-

isms. We have made available PhosTryp as a web server

at http://phostryp.bio.uniroma2.it.

Methods
Positive dataset

The phosphorylation sites used in this study are derived

from phosphoproteomics experiments conducted in

Leishmania donovani using the fully annotated genome

database of the closely related L. infantum (http://www.

genedb.org) [35] (i.e. all the sequences used in this work

are from L. infantum). A portion of these peptides has

already been published [7]. The remainder was identified

using the following experimental procedure (Tsigankov

et al., in preparation).

A cloned line of L. donovani 1SR was grown and sub-

mitted to differentiation as described in [36]. Phospha-

tase inhibitors were used during cell harvesting. Frozen

cell pellets were lysed using a buffer that contained

deoxy-cholate and phosphatase inhibitors as described

in [37]. One milligram of protein from each time point

was reduced with dithiothreitol and cysteine sulfhydryls

alkylated with iodoacetamide, and then subjected to 20

μg of trypsin for 16 h at 37°C. The resultant peptides

were mixed with TiO2 beads, and phosphopeptides

were eluted in 2 steps, using 30 and 50% ACN in 0.5%

NH4OH. The eluted peptides were subjected to LC-MS/

MS analysis. All data files were searched for protein

identification using Protein Pilot (V 2.01) and MAS-

COT. Data was searched against the L. infantum ver. 3

database.

The peptides used in this work represent the largest

available reportoire of Leishmania phosphorylation sites.

Since the dataset contained a low number of tyrosine

phosphorylation sites we decided to eliminate them and

only focus on serine and threonine. Our work is there-

fore based on 1176 phosphorylation sites, 966 on serine

and 210 on threonine, mapping to 482 phosphoproteins.

We obtained our positive set by extracting a window of

-5/+5 residues around the phosphorylation site. The

redundancy of the dataset was reduced by discarding

peptides having more than 50% identity (including the

phosphorylated residue) with another peptide in the set.

Negative dataset

To construct a negative dataset we firstly extracted all

the serine and threonine residues with their surrounding

amino acids (-5/+5) from the L. infantum proteome

after excluding the proteins with experimentally identi-

fied phosphorylated residues. We then performed a ran-

dom sampling of these peptides in order to have

negative and positive sets of the same size. The sam-

pling process preserved the same 8:2 ratio of serines to

threonines that was found in the positive dataset. As

done for the positive set, the redundancy of the negative

peptides was reduced using a 50% sequence identity

cutoff.
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Support Vector Machine features

For each peptide, the features we included as variables

in the Support Vector Machine (SVM) were: the amino

acid sequence, the secondary structure and the disorder

prediction for the site, and a feature dependent on the

composition of a window of +/- 2 residues around the

phosphorylation site. Each feature is described in more

detail in the following paragraphs.

Sequence features

The sequence was given as input to the SVM using two

different representations: the standard orthogonal binary

encoding, and an encoding based on the substitution values

in a PAM30 matrix. More specifically each one of the 11

residues of the peptide is represented by a vector of 20 ele-

ments, corresponding to the 20 different aminoacids.

When the binary encoding is used the column correspond-

ing to the identity of the aminoacid at a specific position of

the peptide has value 1, while the remaining 19 columns

are 0. The alternative encoding assigns to each of the 20

columns the value for the substitution of the residue in the

peptide with the aminoacid corresponding to the column.

The substitution matrix-based encoding is clearly less

stringent than the orthogonal encoding. However we did

not want to be excessively permissive as even a single

mutation can have a profound effect on the interaction

of a kinase with its substrate. Therefore we chose to use

the PAM30 matrix which is fairly stringent and is also

the default used by the NCBI BLAST server when deal-

ing with peptide queries.

Secondary structure and disorder features

The secondary structure of each residue was predicted

using the PSIPRED software [38] (the whole sequence of

the protein was used as input). We encoded this predic-

tion as a binary feature according to whether the phos-

phorylation site is located in a coil or not. Similarly we

predicted the order/disorder state of each residue using

the Remark465 predictor of DisEMBL [39]. This was

also coded as a binary feature according to whether the

site is predicted to lie in a disordered region or not.

Residue composition feature

The last feature we included in our predictor depends

on the identity (but not position) of the residues in a

window of +/- 2 aminoacids around the site. Firstly we

calculated the number of occurrences of each aminoacid

in the positive and negative sets, normalizing by the size

of each set. We then defined a propensity value as the

logarithm of the ratio between the occurrence of each

aminoacid in the positive and negative sets. The propen-

sity scores of the four residues in the +/- 2 window were

then summed to obtain a final value which was given as

input to the SVM.

SVM training

We used 80% of the positive and negative sets to train

the SVM. The remaining peptides were used as test.

The SVM training and testing procedure was written in

R, using the package e1071. We trained 4 SVMs: each

one of the two sequence encodings (orthogonal and

matrix-based) was tried with and without the extra,

non-sequence, features (secondary structure, disorder

predictions and residue composition feature). We used

the Radial Basis Function as kernel for regression.

This means that each classifier outputs a numeric

value according to the likelihood that a residue is

phosphorylated.

For each SVM, we performed a grid search to select

the best values for the kernel function parameters:

gamma, cost and epsilon. The grid search method we

implemented is an iterative process that starts from the

full range of values for each parameter. For the cost, i.e.

the penalty factor, we centered the search around a

value equal to the range of output values. The epsilon

parameter search was restricted to a range of values that

give good generalization capabilities [40]. The gamma

parameter is known to be related to the number of fea-

tures of the SVM, therefore a different range of gamma

values was used for each SVM.

The range of each parameter is first discretized

according to a certain step size. Then at each iteration

the algorithm tests all the possible combinations of

parameters values to identify the one yielding the best

performance (i.e. lowest mean squared error). Each par-

ticular combination of parameters is evaluated using a

10-fold cross validation. At each subsequent iteration

the range is halved, using the best value of each para-

meter as the center of the new range. If the new range

contains points that fall outside of the initial range of

the parameter the bounds are modified. This process is

halted when the variation in lowest mean squared error

between the current and previous iterations is less than

a fixed value. The values of gamma, epsilon and cost

that result in the best performance across all the itera-

tions are selected for each SVM.

SVM test

As previously stated 20% of the positive and negative sets

were used to test the SVM. All the SVMs were tested

using a 50% non-redundant test set. This dataset was

obtained by discarding from the test set the peptides that

shared a sequence identity greater than 50% with any of

the peptides of the training set (including the phosphory-

lated residue). Furthermore the same redundancy reduc-

tion was applied within the dataset. Positive and negative

peptides were treated separately throughout. The

final non-redundant test set comprised 116 positive and

170 negative peptides. A bootstrap procedure was
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implemented to assess the variability of the performance

measures on the final test. The bootstrap consisted of

100 samples (with replacement) of 80% of the final test

set. The Area Under the ROC Curve was used as perfor-

mance measures throughout this work.

Training and testing using the combined dataset of L.

infantum, T. brucei and T. cruzi

To derive the final version of PhosTryp we used our

data from L. infantum combined with recently published

data from the related organisms T. cruzi and T. brucei.

All the phosphopeptides from these three organisms

were pooled in one set. Negative peptides were sampled

from each proteome, maintaining the same proportion

as found in the positive set. We reduced the redundancy

using a 50% sequence identity cutoff similarly to what

we did for the L. infantum SVM (see above). The same

pipeline described above for the L. infantum dataset was

applied for training (80% of the data) and testing (20%).

The features we included in this predictor were the

ones that resulted in the best performance for the L.

infantum SVM, i.e. all the non-sequence features and

the sequence in PAM30 encoding.

Two tests were performed. In one case all the

sequences were kept together. In the second test we

divided the test sequences according to the organism

which they belong to, and we assessed the performance

separately for each organism.
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