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Using affinity propagation for identifying
subspecies among clonal organisms: lessons from
M. tuberculosis
Claudio Borile1,2, Mathieu Labarre1, Silvio Franz1, Christophe Sola3,4 and Guislaine Refrégier3*

Abstract

Background: Classification and naming is a key step in the analysis, understanding and adequate management of

living organisms. However, where to set limits between groups can be puzzling especially in clonal organisms.

Within the Mycobacterium tuberculosis complex (MTC), the etiological agent of tuberculosis (TB), experts have first

identified several groups according to their pattern at repetitive sequences, especially at the CRISPR locus

(spoligotyping), and to their epidemiological relevance. Most groups such as “Beijing” found good support when

tested with other loci. However, other groups such as T family and T1 subfamily (belonging to the “Euro-American”

lineage) correspond to non-monophyletic groups and still need to be refined. Here, we propose to use a method

called Affinity Propagation that has been successfully used in image categorization to identify relevant patterns at

the CRISPR locus in MTC.

Results: To adequately infer the relative divergence time between strains, we used a distance method inspired by

the recent evolutionary model by Reyes et al. We first confirm that this method performs better than the Jaccard

index commonly used to compare spoligotype patterns. Second, we document the support of each spoligotype

family among the previous classification using affinity propagation on the international spoligotyping database

SpolDB4. This allowed us to propose a consensus assignation for all SpolDB4 spoligotypes. Third, we propose new

signatures to subclassify the T family.

Conclusion: Altogether, this study shows how the new clustering algorithm Affinity Propagation can help building

or refining clonal organims classifications. It also describes well-supported families and subfamilies among M.

tuberculosis complex, especially inside the modern “Euro-American” lineage.

Keywords: asexual organisms, species delineation, epidemiology, DR locus, Clustered Regularly Interspaced Short

Palindromic Repeats (CRISPR)

Background
The advent of powerful genotyping methods, either by

global sequencing or by high-throughput analysis of var-

iation at specific loci (mini- or micro-satellites [1];

CRISPR (Clustered Regularly Interspaced Short Palin-

dromic Repeats) loci [2,3]; SNPs [4]), provides masses of

genetic data that need to be compared and clustered.

Most widely used comparison methods are phylogenetic

methods i.e. hierarchical clustering, building tree-like

structures to display the diversity. These methods con-

sider that each individual forms a cluster and repeatedly

merge the most similar clusters based on pairwise dis-

tances (Phenetics such as Neighbour-Joining), or try to

infer the tree that most fits the data (Cladistics such as

Maximum Likelihood, Bayesian analysis) using an

appropriate evolutionary model of the compared charac-

ters. This provides a continuous pattern of how diver-

gent organisms are. Other comparison methods consist

in finding relevant clusters, a process referred to as par-

titioning. A method made popular by the software

Structure [5], and referred to as model-based clustering,

consists in using Bayesian methods to assign individuals
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in a pre-determined number of populations. The

assumption underlying this software is that the popula-

tion conforms Hardy-Weinberg hypotheses i.e. refers to

organisms reproducing sexually, with random pairing

inside the population. This assumption is theoretically

very problematic for clonal organisms, although practice

has shown that it can provide meaningful results [6],

partly because some parameters can be set to mimic

poor mixture inside populations. Other methods have

been developed outside biology, for instance to categor-

ize images [7,8]. They use similarity to group data in

spherical clusters well represented by their centroid

(also called representative or exemplars), and have

already been tentatively used to classify human genetic

data [9]. This method awaits further experimental vali-

dation on large datasets.

Clustering methods can be applied to different types

of loci, ranging from repetitive sequences such as inser-

tion sequences, micro-, mini-satellites or the CRISPR

loci to single nucleotide polymorphisms (SNPs), pro-

vided an appropriate method is available to calculate the

distance between individuals. Such methods usually rely

on a model of the mutation process. Which loci should

be targeted depends on the mean divergence time

between individuals, as repetitive sequences mutate fas-

ter than SNP loci. Several mutation models have been

developed for DNA sequence with point mutations [10].

For repetitive sequences (micro- and mini -satellites),

categorical distance or the Stepwise Mutation Model

(SMM [11]) are mostly used.

CRISPR loci (Clustered Regularly Interspaced Short

Palindromic Repeats) form a new family of repetitive

sequences [12,13]. They consist in the repetition of 24

to 47 bp sequences called Direct Repeats (DR) separated

by unique sequences called spacers (from 26 to 72 bp).

The constitutive unit is therefore the combination of

one DR and one spacer, and presently described CRISPR

loci have from 2 to 249 units [13]. These repetitions are

surrounded by protein-encoding sequences called cas

genes (derived from CRISPR-associated genes). The

whole locus confers resistance to bacteriophages and

plasmids in Streptococcus thermophilus [14,15] and in

Escherichia coli when overexpressed [16]. Resistance to

the corresponding organisms is under investigation in

species where spacers are homologous to foreign DNA

[17]. They exhibit a quite high mutation rate so that

they have proven useful for epidemiological studies.

Describing the presence or absence of 43 spacers of M.

tuberculosis CRISPR locus has become a routine techni-

que in any tuberculosis reference center and is referred

to as spoligotyping for spacer oligonucleotide typing

[18]. Pairwise comparisons of binary profiles can provide

a distance matrix that has been used to infer phyloge-

netic relationships. The most common approach to infer

relationships using spoligotype patterns uses the Jaccard

index (same principle as Hamming distance or Dice

coefficient) as distance [19], counting the proportion of

spacers that are present in both profiles. The distance

matrix, either made of pure spoligotyping data or com-

bining them with minisatellite data, is usually processed

using UPGMA or NJ algorithm to build a dendrogram

or a phylogenetic tree [20]. A more elaborate approach

using the Zipf distribution and the evolutionary

dynamics of CRISPR loci has proven more relevant to

infer phylogenetic relationships for the M. tuberculosis

complex [21] but is not implemented in a user-friendly

software yet and does not propose assignations for all

currently described spoligotype patterns.

The worldwide database of spoligotyping in M. tuber-

culosis complex is called SpolDB (the latest public ver-

sion being SpolDB4), and has helped identifying

recurrent signatures in CRISPR profiles [22-24]. These

signatures, mainly based on the absence of adjacent

spacers, led to the naming of large clonal families, the

monophyly of which has been confirmed through other

markers such as minisatellites (referred to as MIRU-

VNTR for Mycobacterial-Interspersed-Repetitive-Units-

Variable Number of Tandem Repeats), Region of Dele-

tions (RDs) and SNPs [6,25,26]. Main acknowledged

families are EAI for East-African-Indian (later referred

to as “Indo-Oceanic” by Gagneux et al.), M. africanum

1 and 2 (later “West-african 2” and “West-African 1”),

animal strains (M. bovis, M. caprae, M. pinnipedii, M.

microtii), CAS for “Central-Asia” (later “East-African-

Indian”), Beijing, X, Haarlem, LAM for “Latino-Ameri-

can and Mediterranean”, T and MANU (also designated

as T ancestor) [23,27]. Monophyly of each of the LAM,

T and Haarlem families has been partly invalidated.

However, the larger lineage to which they belong and

that is characterized by the 33-36 spacers deletion at the

CRISPR profile (merging T, LAM, X, Haarlem families

and S subfamily) has been confirmed and designated as

the “Euro-American” lineage [27]. It corresponds to the

Principal Genetic Groups (PGG) 2 and 3 as defined by

Sreevatsan et al. [28]. Altogether deletions in spoligo-

type patterns have proven to contain phylogenetic

information and allow most strains be assigned to the

families described above. Assignations performed by

experts are reported in SpolDB4 database, patterns car-

rying no or contradictory signatures been labeled as

“U” for “Unknown or Unclassified”. To circumvent the

dependence on experts’ analysis, the Bennett’s labora-

tory proposed automatized classification of spoligotype

patterns using Bayesian algorithms and a distance

method taking into account the deletion process by

which spoligotype patterns evolve. They provide an

on-line tool called Spotclust [29] to assign each spoli-

gotype to a family, either one described in SpolDB3
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[30] or one of the 6 large families proposed by Gag-

neux and coworkers [31].

Here we wanted to take advantage of a recently devel-

oped algorithm, Affinity Propagation, to confirm and

extend these methods. This algorithm identifies refer-

ences for every data point so that data are grouped and

centered on these references while a specific cost func-

tion is minimized. The cost of adding a new reference

point, assigned by the user, determines the final number

of clusters. Prior to the use of this algorithm, we tested

different distances to calculate pairwise distances

between spoligotype patterns. We took advantage of

previously identified references and expert assignation

to rank these distances, some of which are derived from

previously proposed evolutionary models [21,31]. The

distance that best identified the appropriate reference

for each spoligotype pattern was implemented in the

Affinity Propagation algorithm to identify relevant sub-

families among M. tuberculosis complex (MTC). These

families partly correlated with previously identified

subfamilies.

Altogether, this approach allowed us to assess the

robustness of previously identified sublineages among

MTC, to identify new relevant sublineages and to pro-

vide re-assignations of the spoligotype patterns

described in SpolDB4. These re-assignations interest-

ingly matched those of studies using VNTR and/or SNP

data.

Results
Comparison of classifications based on new distances or

on Jaccard index to expert classification of SpolDB4

Clustering of CRISPR patterns (spoligotypes) of M.

tuberculosis complex is commonly done using the Jac-

card index as distance [32]. This index counts the

shared spacers without taking into account their spatial

organization. However, it has been shown that adjacent

spacers have a higher probability to be simultaneously

deleted [21], and this feature has been used by experts

to define M. tuberculosis complex families and subfami-

lies [22,23] in the international database SpolDB [33].

We wanted here to identify a distance conducing to the

best concordance of spoligotype assignations at the

family level, as available in SpolDB4 database [23]. We

retained the ten widely acknowledged families: M. afri-

canum, Animal strains (grouping M. bovis, M. pinnipe-

dii, M microtii, and M caprae), Beijing (herein also

referred to as Beij), CAS, EAI, Haarlem (also referred to

as H), LAM, MANU, T and X [25]. Each is character-

ized by a different spoligotype signature and thus a dif-

ferent reference profile [22,33] (Table 1). In addition to

Jaccard index, we set up three methods to compute the

distance between pairs of patterns: “Domain Walls”

measuring the proportion of shared limits of blocks of

spacers in the CRISPR locus, “Blocks” measuring the

proportion of shared blocks of spacers, and “Deletions”

measuring the proportion of shared blocks of deleted

spacers (see Methods and Figure 1). We implemented

these four methods to compute the distances of each

spoligotype of SpolDB4 database [33] to the reference

profiles of the ten families (see Table 1). For each

method, depending on the reference to which it was

most similar, each spoligotype was assigned to one of

Table 1 References of the ten best acknowledged M.

tuberculosis complex families

SIT SpolDB4 classification Reference Spoligotype pattern

family subfamily

1 BEIJ BEIJ

26 CAS CAS1

42 LAM LAM9

50 H H3

53 T T1

100 MANU MANU1

119 X X1

236 EAI EAI5

181 AFRI AFRI1

482 animal BOV1

BEIJ = Beijing also referred to as East Asia; CAS = Central Asia also referred to

as East Africa and India; LAM = Latino-American and Mediterranean; H =

Haarlem; EAI = East African Indian.

A."Jaccard

2     +2*2                        +4*2           +7*2       =28/32=87.5%

B."Walls

2         +2 +2      +2   +2          +2 =12/14=83%

C. Blocks

w

C."Blocks

2                +2             =4/7= 57%

D."Deletions

2 +2                   =4/5= 80%

Figure 1 Distance methods. A: classically implemented Jaccard

index. B-D: newly proposed distance methods. w = Domain Walls

also referred to as walls. Numbers below the spoligotype patterns

count the number of their common features: either the number of

common spacers (A), common walls (B), common blocks (C), or

common deletions (D). These numbers are summed and divided by

the total number of features in the two spoligotype patterns to

obtain the similarity between the two spoligotypes.
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the ten families. Spoligotype patterns for which two

references were equally similar were coined as Unassign-

able. These assignations were compared to the SpolDB4

classification. The Jaccard method rarely associated the

spoligotype patterns to their reference (only 12.3% of

correctly assigned spoligotypes, see Figure 2). The meth-

ods that best fitted the expert classification were the

“Deletions” (84.2% of correctly assigned spoligotype pat-

terns, ncorrect = 1402), and the “Domain Walls” method

(84.0%, ncorrect = 1399). These methods also provided

the smallest amount of assignations that differed from

those of the experts ("Deletions": 11.0%, n false = 183;

“Domain Walls": 12.3%, n false = 204). These methods

thus appear to be the best for fitting the expert classifi-

cation out of the four methods we tested.

“Deletions” method succeeds in correcting false SpolDB4

assignations

Some families’ assignations provided by SpolDB4 have

been debated. For instance, patterns classified as LAM7-

TUR [32] have been found not to be related to the

LAM family as strains carrying that pattern do not

share the ligB1212 mutation that defines the LAM family

[34]. Such strains were instead related to T-strains [35]

and were renamed TUR. All methods tested here except

the “Deletions” method still assigned them to LAM

family, including Spotclust. The “Deletions” method

assigned them all (nLAM7-TUR = 8) to the T family as did

methods using VNTRs [35] or SNPs [34] (Table 2).

Similarly, all spoligotypes assigned to the H4 subfamily

(nH4 = 34) in SpolDB4 were recently excluded from the

Haarlem family based on them not carrying the mgtC545

mutation [34]. They were renamed “Ural” and appropri-

ately assigned to the T family by the “Deletions” method

only (Table 2). Hence, part of the assignations suspected

to be wrong with the “Deletions” method as compared

to expert classification may in fact correct previous clas-

sification errors. The “Deletions” method thus recog-

nizes phylogenetic lineages better than “Domain Walls”

method and likely at least as well as the expert eye and

Spotclust. This is further supported by the clear gap

between the similarity of correctly assigned spoligotype

patterns to their reference (Figure 3D, black boxes in

the Deletions plot) and the highest similarity to any

reference of patterns assigned differently than by the

expert (light gray boxes) specifically with the “Deletions”

method.

Interestingly, Beijing, X and EAI families exhibited no

incongruence between the “Deletions” and the expert

method (no light gray box), suggesting that these

families are clearly and appropriately defined. As

reported above (Figure 2), the Jaccard method failed to

assign most spoligotype patterns to any family; for

instance, no spoligotype patterns could be assigned to

BEIJ, EAI or X families (Figure 3A) with a maximum

similarity to any reference not reaching 20% for BEIJ

family (Additional file 1). “Domain Walls” and “Blocks”

methods provided either poor resolution between cor-

rectly and wrongly assigned spoligotype patterns (Figure

3A and 3C), or a lower number of families with no dis-

crepancy with the expert classification (only the X

family with the “Domain Walls” method, Figure 3B).

Assignations of U spoligotype patterns

Assignations thus seem phylogenetically relevant using

the “Deletions” method and the references of the well-

acknowledged families. We thus propose an alternative

spoligotype patterns classification on the 1939 spoligo-

types reported in SpolDB4 (Additional File 2). Assigna-

tion rate of “U” (Unclassified) patterns was relatively

low with this method as compared to others (81 out of

272 U patterns, i.e. 29.8%, Figure 4) but may be more

reliable as exemplified by three U patterns recently

assigned [34]: “Deletions” method could only assign one

of them but without error whereas two of the three

assignations provided by the “Domain Walls” method

and Spotclust algorithm were erroneous (Table 2, SIT

105, 1274 and 1531).

Figure 2 Assignations matches between SpolDB4 and the

different distance methods on whole SpolDB4 database (n =

1937 SIT). References are those described in Table 1. Assignations

were performed according to the reference for which the distance

was the lowest. The patterns for which the most similar reference is

the same as that indicated by its SpolDB4 assignations, were scored

as “Correct”. Note that “Domain Walls” and “Deletions” have equally

high values of assignations agreeing with the expert classification.

When the method identified two identically similar references for a

pattern, this pattern was scored as Unassigned and described as

Ambiguous assignation. Ambiguity was the lowest with “Domain

Walls” method.
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Table 2 Assignations of LAM7, H4 and selected “U” spoligotype patterns from SpolDB4, according to different

methods.

spoligotype pattern SpolDB4 Recent litterature Deletions Domain Walls SpotClust subfamily

SIT family Sub-family assignation family family SpolDB3-based RIM

41 LAM LAM7 T-TUR T LAM LAM9 N19

186 LAM LAM7 T-TUR T LAM LAM9 N19

367 LAM LAM7 T-TUR T LAM LAM9 N19

930 LAM LAM7 T-TUR T LAM LAM1 N19

1261 LAM LAM7 T-TUR T LAM LAM9 N19

1589 LAM LAM7 T-TUR T LAM LAM3 N2

1924 LAM LAM7 T-TUR T LAM LAM9 N19

1937 LAM LAM7 T-TUR T LAM LAM9 N19

35 H H4 T-Ural T H H3 N34

262 H H4 T-Ural T H H3 N34

361 H H4 T-Ural T H H3 N34

399 H H4 T-Ural T H T2 N34

596 H H4 T-Ural T H H3 N34

597 H H4 T-Ural T H H3 N34

656 H H4 T-Ural T H H3 N34

762 H H4 T-Ural T H H3 N34

777 H H4 T-Ural T H H3 N34

817 H H4 T-Ural T H H3 N34

920 H H4 T-Ural T H H3 N34

921 H H4 T-Ural T H H3 N34

922 H H4 T-Ural T H H3 N34

1117 H H4 T-Ural T H H3 N34

1134 H H4 T-Ural T H H3 N34

1165 H H4 T-Ural T H H3 N34

1174 H H4 T-Ural T H H3 N34

1242 H H4 T-Ural T H U N34

1269 H H4 T-Ural T H H3 N34

1276 H H4 T-Ural T H H3 N34

1281 H H4 T-Ural T H H3 N34

1292 H H4 T-Ural T H H3 N34

1447 H H4 T-Ural T H H3 N34

1448 H H4 T-Ural T H H3 N34

1457 H H4 T-Ural T H H3 N34

1568 H H4 T-Ural T H H3 N34

1581 H H4 T-Ural T H H3 N34

1384 H H4 T-Ural T U T3 N40

1446 H H4 T-Ural T U H3 N34

1452 H H4 T-Ural T U H3 N34

1455 H H4 T-Ural T U U N34

1456 H H4 T-Ural T U H3 N34

1461 H H4 T-Ural T U H3 N34

1480 H H4 T-Ural T U LAM9 N19

105 U U H U Afri LAM7 N29

1274 U U LAM U Afri H1 N5

1531 U U X X X X1 N44

“Recent literature assignation” represents the standard, and refers to studies using loci other than the CRISPR locus: T-TUR classification has been suggested both

by Millet et al. [35] and Abadia et al. [34] based respectively on VNTR signature and SNPs signatures. T-Ural classification has been suggested by Kovalev et al.

[36] as they clustered with H37Rv strains and Abadia et al. [34]. RIM: Randomly Initialized Model. N ... families as defined by Spotclust are described on their web-

site based on what SpolDB4 families/sub-families are mostly represented: N2 family is described as LAM3-rich; N5 as H1-rich; N19 as LAM-rich; N29 as LAM+EAI-

rich; N34 as H3+S-rich; N40 as T3-africanum-rich; N4 as X1-H37Rv-rich. The assignations matching the standard are shown in bold characters. Assignations failures

are shown in italic. Note that the “Deletions” method provides the highest number of exact assignations and the least assignation failures.
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Automatized identification of references by Affinity

Propagation clustering

The “Deletions” method is highly useful to classify spoli-

gotype patterns in the described families, but this classi-

fication highly depends on the identification of

references. These references are widely acknowledged

for major families but the relevance of finer classifica-

tion is recurrently debated [25,27,35]. Affinity propaga-

tion is an algorithm that identifies a representative (also

called exemplar) for each data point in an iterative man-

ner until the chosen configuration of exemplars mini-

mizes a suitable cost function that depends on the

choice of the clusters (see Methods). A parameter set by

the user (that we denote as ‘penalty’, p) determines an

additional cost for every exemplar found. When p is low

(high negative value), large clusters are built where

some data points have relatively low similarity with their

representative. As p increases, the clusters reach smaller

sizes so that they become

numerous, and the mean similarity with the represen-

tative increases. Interestingly, when the number of clus-

ters does not vary even if the penalty changes, this

indicates that the data points are not evenly distributed,

i.e., form meaningful clusters. When applying this

method to the SpolDB4 dataset, relevant numbers of

clusters were found to be 14 and 32 (Figure 5). The

mean similarity with the representative was higher using

Affinity Propagation as compared to K-Means or with

Bionumerics applying hierarchical clustering (Additional

File 3). The clustering in 14 clusters reproduced most of

the 10 references identified by the experts (references

for animal strains, CAS, EAI, H, LAM, T, and X, Table

3). However, H family was divided in H1 and H3, none

of them including the H4. H4 was grouped with T spoli-

gotype patterns as suggested by previous studies that

renamed it Ural [34,36]. We propose some renamings

according to major families represented in each cluster
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classification (Gray). Black boxes: box plots of the similarity to their reference for patterns with congruent classification between distance-based

method and expert-defined. Boxes extend from 0.25 to 0.75 quartiles, and whiskers to the most extreme values. Median is highlighted by a thick

bar. Grey boxes: box plots of the similarity to their reference for patterns with incongruent classification between distance-based method and

expert-defined. Families for which no spoligotype patterns gave ambiguity show a single (black) box, corresponding to the mean similarity of

congruent assignations (Beij, X and EAI with “Deletions” method; X for “Domain Walls”). Families for which no spoligotype patterns were found

similar to the reference show no data (Beij, T, X, EAI with “Jaccard” method). BEIJ = Beijing; afri=M. africanum; CAS = Central Asia; LAM = Latino-

American and Mediterranean; H = Haarlem; EAI = East African Indian.

Figure 4 Assignations of ‘U” patterns managed by the

different methods. Percentage was calculated based on the 272

“U” patterns found in SpolDB4.
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its reference. Note that two plateau can be detected, at 14 and 32 clusters respectively, indicating that the corresponding clustering is robust,

and therefore might be relevant.

Table 3 References after Affinity Propagation clustering for nclusters = 12.

AP-family Reference Majoritary SpolDB4 family

SpolDB4 subfamily SIT Spoligotype pattern Family Proportion in the AP-family Total Nb

animal1(Bov1-3-Cap-Mic-Pin) bovis_1 482 Animal 0.888 206

animal2(Bov2) bovis_2 683 Animal 0.621 66

Beij-afri BEIJ 255 Afri 0.339 56

CAS CAS_1 26 CAS 0.760 96

EAI EAI_5 236 EAI 0.84 250

H1-2 H_1 47 H 0.853 68

H3 H_3 50 H 0.874 111

LAM(9-3-11-6-4) LAM_9 42 LAM 0.721 179

T2 T_2 52 T 0.545 145

T3-LAM(2-5) LAM_2 17 LAM 0.432 148

T-(Ural-H3-LAM10-7)) T_1 53 T 0.823 351

S(&U) S 34 T 0.554 74

T(&U) T_1 173 T 0.420 81

X X_1 119 X 0.75 108

BEIJ = Beijing (also East Asia); afri=M. africanum; CAS = Central Asia (also East Africa and India); LAM = Latino-American and Mediterranean; H = Haarlem; EAI =

East African Indian. Confirmed families are shown in bold.
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(Table 3). When performing clustering with 32 clusters,

many of the SpolDB4 subfamilies were identified. Some

of them were however merged such as africanum2-afri-

canum3, Bovis1-3, pinnipedii-microtii, LAM2-LAM1-

LAM5, X1 and 3 in X, etc. (Table 4). Among EAI, four

meaningful subfamilies were identified whereas only 2

were among LAM. This suggests that the LAM family

was oversplitted in the expert classification. In contrast,

seven subfamilies were found among the T family. Two

of them exhibited complex signatures with few

spoligotype patterns actually matching the whole signa-

ture (for example, n = 5/29 among T1a). Subfamilies

T2, T3 and T5 were confirmed by this method. One

family still had SIT53 (T1) as a reference indicating that

many spoligotypes (n = 261) still cannot be further clas-

sified according to their spoligotype pattern. Last, one

family was created from U spoligotypes and has SIT 458

as a reference. Most patterns carried the deletion of

spacers 29 to 34 that could constitute a new significant

signature. Countries in which the corresponding SITs

Table 4 References after Affinity Propagation clustering for nclusters = 32.

AP-subfamily
naming

reference Most represented subfamilies Nb of spoligotype
patterns

Classical subfamily
naming

SIT spoligotype (43
format)

First most
represented
subfamily

Second most repr.
family

Subfamily Prop.

Afri1 AFRI1 181 AFRI1 0.531 AFRI 32

Afri2-3 AFRI2 331 AFRI2 0.364 AFRI3 22

Beij BEIJ 1 BEIJ 0.842 U 19

Bov1-3 BOV1 482 BOV1 0.585 BOV 159

Bov2 BOV2 683 BOV2 0.467 BOV 45

Cap CAP 647 CAP 0.75 U 20

CAS CAS1 26 CAS1 0.487 CAS 80

EAI1 EAI1 48 EAI1 0.804 U 46

EAI3-5 (del2-3-37-
38-39)

EAI2 11 EAI5 0.383 EAI3 55

EAI2 (del3-20-21) EAI2 19 EAI2 0.5 U 48

EAI EAI5 236 EAI5 0.651 EAI4 86

EAI6 (del23-37) EAI6 292 EAI6 0.5 EAI5 42

H1-2 H1 47 H1 0.790 U 62

H3 H3 50 H3 0.927 U 96

Ural H4 262 H4 0.714 U 28

LAM5-2-1(del3-13) LAM2 17 LAM5 0.207 U 92

LAM3 LAM3 33 LAM3 0.455 U 33

LAM LAM9 42 LAM9 0.574 LAM11 136

Manu MANU2 54 MANU2 0.793 U 29

Pin-Mic PIN 637 BOV 0.391 U 23

S S 34 S 0.678 U 59

T (T1-H3-Lam10-Cam) T1 53 T1 0.828 H3 261

T1a (del5-40-43) T1 833 T1 0.484 U 31

T1b (del21) T1 291 U 0.367 T1 30

T1c (del15) T2 118 T1 0.432 U 37

T2 (del40) T2 52 T2 0.521 U 119

T3 (del13) T3 37 T3 0.373 U 59

T4 (del19-23-24-38-
39)

T4 39 T1 0.406 T4 32

T5 (del23) T5 44 T5 0.561 U 41

X X1 119 X1 0.492 U 61

X2 X2 137 X2 0.824 T1 34

SEA1 (del29-34) U 458 U 0.955 CAS 22

BEIJ = Beijing (also East Asia); afri=M. africanum; CAS = Central Asia (also East Africa and India); LAM = Latino-American and Mediterranean; H = Haarlem; EAI =

East African Indian. Confirmed subfamilies are shown in bold.
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were most abundant surround the Indian Ocean: Mada-

gascar, Thailand, India and Vietnam (Table 5). We thus

named it SEA1 (South East Asia 1) (Table 4). The sig-

nificance of this signature compared to the classical EAI

signature, which differs only by the presence of spacer

33, remains to be established.

Discussion
Here we first validated a simple distance method that

can be used to classify CRISPR genetic profiles based on

a worldwide M. tuberculosis spoligotype database. Sec-

ond, using a recent clustering algorithm exploiting a dif-

ferent approach with respect to those commonly used in

the biological sciences community, we could identify an

alternative M. tuberculosis classification. The compari-

son between the largely validated expert classification

described in the international database SpolDB4 and our

alternative classification validates our approach for M.

tuberculosis CRISPR profiles, opening the way for its use

for other bacterial species where CRISPR were shown to

provide interesting typing information [16].

Clustering power of CRISPR patterns

M. tuberculosis complex (MTC) has been infecting

humans for at least 2600 years [37] and could be 20,000

years old or even much older [6,38]. Despite its

restricted genetic diversity even between human and

animal strains [39,40], phylogenetical relationships have

been detected using polymorphic DNA sequences

[41,42]. CRISPR loci characterized using the “spoligotyp-

ing” technique have been used to define families

through the use of so-called signatures i.e. the absence

and presence of characterized units of CRIPSR loci, the

spacers [43]. Most of these families found independent

support such as host range or congruence with indepen-

dent genetic markers [22,23,44], even SNPs and Regions

of Deletion [26,34,45]. However, some of them were “ill-

defined” i.e. had a signature that was shared by several

other groups, and others were defeated by independent

loci: H4 subfamily was renamed Ural as it was related to

T strains and not H strains [34,36], LAM7 and LAM10

were renamed TUR and Cameroon respectively as they

are unrelated to LAM strains [6,34,35]. As a conse-

quence, the use of CRISPR patterns to infer phylogeneti-

cal relationship was recurrently discussed [44,46].

We used here an automatized approach for clustering

CRISPR patterns. Our clusters largely reproduced the

well-acknowledged MTC families and provided mean-

ingful clustering for Ural, TUR and Cameroon. In fact,

the misclassification of Ural among Haarlem family was

due to the merging of all signatures having spacer 31

deleted and spacer 32 present disregarding the left bor-

der of the deletion. This classification criterion is not

relevant knowing the evolutionary dynamics of CRISPR

loci due either to the insertion of IS6110 elements or to

the deletion of one of several adjacent spacers. This

kind of errors is avoided if comparison is performed

using an algorithm identifying complete signatures (left

and right borders of the deletions) as included in our

automatized approach (see below for a detailed discus-

sion on methods used to calculate distances between

strains).

Still, the fact that some families are “ill-defined” is an

intrinsic problem of spoligotyping: CRISPR loci in M.

tuberculosis are relatively short and they evolve at a rate

that cannot exclude the absence or the insufficient num-

ber of mutation in some lineages. This intrinsically lim-

its the power of our study, i.e. we cannot classify all

strains, and not all of them with the same precision.

However, this problem does not affect the assignation

quality of the strains we classify which are in fact

numerous (more than 80%).

We thus argue that CRISPR profiles evolving by the

insertion of transposable elements or by deletion such

as those of M. tuberculosis contain relevant information

for clustering and even inference of some phylogenetic

Table 5 Spoligotype patterns clustered with SIT 458 with

Affinity Propagation when nclusters = 32.

SIT Spoligotype pattern SpolDB4 assignation Main country

458* U THA

354 U GBR

526 U GNB

527 U GNB

863 U BRA

1172 U EST

1186 U THA

1187 U THA

1374 U MYS

1386 U BGD

1436 U BGD

1462 U GEO

1515 U MDG

1518 U MDG

1519 U MDG

1520 U MDG

1521 U MDG

1524 U MDG

710 U NLD

405 U VNM

426 CAS_2 USA

523 U MYS

Note that most of the patterns carry the 29-34 spacers deletion, and that

most of them are unclassified by SpolDB4. “Main country” refers to the

country where the highest number of isolates carrying this pattern were

found according to SpolDB4 [33]. * indicates the spoligotype proposed as a

reference by the Affinity Propagation algorithm. The countries are identified

via the ISO3166-1 alpha-3 code. THA = Thailand; GBR = United Kingdom; GNB

= Guinea-Bissau; BRA = Brazil; EST = Estonia; MYS = Malaysia; BGD =

Bangladesh; GEO = Georgia; MDG = Madagascar; NLD = Netherlands; VNM =

Vietnam; USA = United States.
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links. The targeted locus must however not be missing

for the individuals to be classified. To avoid this pitfall,

the use of CRISPR loci should restrict to recently

diverged groups as is the M. tuberculosis species com-

plex (more than 99.9% identity). Such organisms

uncover diverse human pathogens such as Yersinia pes-

tis, Salmonella enterica, Bacilllus anthracis, Mycobacter-

ium leprae and Mycobacterium ulcerans. Still, the use of

CRISPR profiles in phylogenetic reconstructions would

benefit from further developments and validations for

species with still active CRISPR loci.

Distance methods for CRISPR profiles

If CRISPR can be used to infer phylogenetic relation-

ship, the evolutionary model or distance method used

during the inference is also of great importance. Several

developments had been proposed until now. We want

to discuss here what our approach adds to previous

ones.

CRISPR profiles (spoligotype patterns) form a

sequence of binary data. As such, it has been analyzed

with tools developed for binary information such as the

Jaccard Index that focuses on the sharing of every unit

in the profile (here the spacers) taken independently.

This however ignores an essential feature of the corre-

sponding CRISPR locus: that it evolves by the loss of

spacers. These losses can occur either because of the

insertion of a transposable element that disrupts the

sequence used in the spoligotyping technique, or by

deletion. Deletions can occur for several spacers at once,

even if the frequency of large deletions may be lower

[21]. As a consequence, the distance between two pat-

terns, one carrying many spacers and the other carrying

one large deletion, should not be considered as propor-

tional to the number of spacers that were lost (as done

by the Jaccard index), but as corresponding to a single

mutation event. The methods proposed by the Bennett

laboratory [30,31] take into account the deletion process

and add a probability function that best mimics the fre-

quency of deletion size. In Spotclust, a Bayesian algo-

rithm incorporating the inference of ancestral

spoligotype patterns based on SpolDB3 database is used

to assign spoligotypes to SpolDB3 subfamilies or to

families built using a Randomly Initialized Model (RIM)

[30]. We showed here that, by simply using expert-

defined references of main families and the “Deletions”

distance method that is based on deletion signatures, we

could better assign Unknown spoligotype patterns than

Spotclust as well as correct previous erroneous assigna-

tions in SpolDB4 classification such as those to LAM7

(TUR) [29]. For Spotclust algorithm, this was true for

both the SpolDB3-based classification and the Randomly

Initialized Model. The reason for that could be either

that the size of the database used by Spotclust was too

small to capture evolutionary steps relevant to MTC

evolution, or that Bayesian statistical inferences are too

dependent on priors.

Performance of the Affinity propagation algorithm on

CRISPR profiles clustering

Affinity Propagation is a message-passing algorithm that

considers clustering as a problem of minimizing an

“energy” function of the clusters configuration in the

data set (see Methods section for a general review of the

algorithm, and [8]). This approach seems particularly

promising and could help solving species delineations in

asexual lineages where obligate gene exchange cannot

be used as a delineation criterion [9]. One of the main

features of the algorithm is the possibility of regulating

the total number of clusters as a function of an input

parameter of the algorithm (called the “chemical poten-

tial” μ, by analogy to the chemical potential of physical

systems, or p for penalty parameter, see Methods). Also

the high speed (the computational time goes as N2 if N

is the size of the dataset) and thus the possibility to ana-

lyze very large networks is encouraging the use of this

algorithm. With this method we identified both families

and subfamilies in MTC. A single family out of 14 made

no sense (Beijing-africanum). This is likely due to a lack

of information in Beijing spoligotype pattern as the large

1-36 deletion limits the recognition of other signatures.

When considering patterns carrying a larger number of

spacers, the classification was largely congruent with the

literature. In addition, we could identify new signatures,

especially one, termed SEA1, among previously unclassi-

fied patterns. We therefore believe that this algorithm is

very useful for classifying the widely used 43-spoligotype

patterns in M. tuberculosis but could prove even more

useful on patterns larger than 43 spacers, e.g. the

improved 68 spacers format.

“Euro-american” lineage evolution

Despite large sequencing efforts [25,47], there has been

a standing difficulty in unraveling the relationships

inside “Euro-American” lineage strains (carrying the 33-

36 deletion in the spoligotype pattern), especially in the

so-called “T family” described in SpolDB4 [23]. Here,

using SpolDB4 database, we could challenge expert-

defined families and subfamilies. We first confirmed the

validity of S and T2 subfamilies that we suggest to con-

sider as families. The S family was first described in

Sicily [48] and independently identified in Québec

where a sublineage was shown to harbor a peculiar

pncA SNP [49]. The T2 family, defined by the absence

of spacer 40 was originally described as M. africanum 2,

however was shown later to be a bona fide M. tubercu-

losis subfamily [50]. We also confirmed the reliability of

Haarlem family subclustering, if renaming H4 as Ural,
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and suggest considering H1-2 and H3 as two families.

We confirmed the validity of T3 and T5 families as well

as T4-CEU (although T4 alone was invalidated). Some

LAM subfamilies renamings based on VNTR and SNP

loci [34-36] are given further support (LAM7 as TUR,

LAM10 as Cameroon), while other were merged

(LAM1, 2 and 5). The tendency to merge many expert-

defined families was not pervasive. Indeed in the EAI

family, four subfamilies out of the 5 expert-defined ones

were confirmed.

Combining the families and subfamilies identification,

we could provide a simplified evolutionary scheme for

this lineage (Figure 6). We hope in the future, by apply-

ing affinity propagation on 68 spoligotype patterns, to

identify other Euro-American subclusters.

Conclusion
This study describes 1) a novel distance method to be

applied on genetic loci evolving by deletion, as for

instance do inactive CRISPR loci, 2) a framework to

take advantage of identified references for classifying

individuals using such loci, 3) a way to identify new

references using the Affinity Propagation algorithm [8],

and 4) assignations and assignation tools for M. tubercu-

losis complex. The distance method and the framework

to identify known references were largely validated by

worldwide M. tuberculosis database at the CRISPR locus

(spoligotype patterns). This work encourages the use of

CRISPR patterns to cluster strains in other organisms

carrying such loci and for which wide genotyping has

been undertaken as it is now the case for human patho-

gens such as Yersinia pestis, Salmonella enterica, Bacill-

lus anthracis, Mycobacterium leprae and M. ulcerans.

Affinity propagation could also be useful to cluster

other genotyping data such as SNPs or minisatellites.

Databases larger than those available by now are how-

ever required to test the validity of this method on such

markers.

Methods
Spoligotyping data

SpolDB4[33], containing 1939 shared international spoli-

gotypes (SIT) was used as raw data for spoligotyping

diversity analysis. This database contains family or sub-

family information, with some uncertainties indicated

such as LAM3 and S-convergent or T1-T2. To simplify

the analyses, when two assignations were provided, only

the first one was kept. We also merged certain families

when the number of spoligotype patterns was very small

and not been confirmed by SNP typing [40]. Specifically,

the families we retained are: africanum (n = 46), animal

strains (grouping BOVIS, PINNIPEDII, MICROTII,

CAPRAE, ntot = 231), Beijing (n = 21), CAS (n = 86),

EAI (n = 213), H (n = 233), LAM (n = 224), MANU (n

= 39), T (n = 482) including S and H37Rv ST as sug-

gested by Brudey et al (2006), X (n = 90). We excluded

SIT69 which was suppressed by Institut Pasteur [33] as

well as the canetti spoligotype pattern which is unique

(SIT592). There are 272 unclassified spoligotypes (U).

The references for each family correspond to SpolDB4

description [23]; they are listed in Table 1.

Methods to compute distances

Three new methods to compute distances were designed

that fit CRISPR loci evolutionary dynamics such as that

of M. tuberculosis complex i.e. evolution by deletion or

transposon insertion. All methods rely on the identifica-

tion of the beginning and the end of spacers deletions.

These limits were named Domain Walls (Figure 1). The

H1ど2
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S
X1ど3

X

T2

X1 3

X2

Ural

LAM

T5

LAM3

LAM2ど1ど5

T3

Other"Ts

T4どCEU

Figure 6 Evolutionary scheme of the Euro-American supported

sublineages. Note that our study does not identify the monophyly

of H1-H2 and H3. Monophyly of T sublineages is not supported by

this method either. LAM monophyly (once LAM7 and LAM10 were

extracted) is in contrast well supported.

Borile et al. BMC Bioinformatics 2011, 12:224

http://www.biomedcentral.com/1471-2105/12/224

Page 11 of 14



“Domain Walls” method measures the proportion of

common Domain Walls between two CRISPR profiles, i.

e. if the profiles have iw and jw Domain Walls respec-

tively and Kw are common, the distance is:

dDWalls =
2Kw

iw + jw

The “Blocks” method considers blocks of spacers; let

ib and jb be the numbers of blocks carried by the two

profiles and Kb the number of blocks they share,

dBlocks =
2Kb

ib + jb

The “Deletions” method considers deleted blocks; let

id and jd be the numbers of blocks of deletions carried

by the two profiles and Kd the number of shared dele-

tions,

dDeletions =
2Kd

id + jd

These distance methods were used to compute the

distance between each SpolDB4 spoligotype pattern and

the references of the ten main M. tuberculosis complex

families. The scripts for such calculations were written

in R language [51] and are available upon request. Each

pattern was assigned to the family whose reference it

was the most similar to.

Clustering algorithms

Affinity Propagation (AP), proposed first in [8], is a

recent clustering method based on the choice of “exem-

plars” as centers of the clusters, i.e., one representative

data point for each cluster to which the other nodes

rely. The choice of the exemplars is based on the mini-

mization of the total “energy” of the system, function of

the total distance between data points and exemplars in

a given clusters configuration. This method falls in the

class of message-passing type algorithms, exploiting the

Belief Propagation method (also known as Cavity

method in the physics literature) to minimize the energy

function in an computationally efficient way (from the

exponential time complexity of the naïve methods to O

(N2), where N is the total number of nodes to cluster).

The starting point is thus a set of data points, represent-

ing the nodes of the network, and a similarity matrix S

defining the similarities among all the nodes as deduced

from the distance between all these nodes. The similar-

ity between two points i and j is defined as

S(i, j) = 1 − d(i, j)

provided that the distance d ranges from 0 to 1, as in

our case (this is always true up to a normalization of

the distance). The aim is then to find a map c :{1,..., N}

®{1,..., N}, with N being the total number of data points

and c(i) ≡ ci is the exemplar of node i, such that the

vector c̄ = (c1, ..., cN) minimizes the energy function

E(c̄) = −

N
∑

i=1

S(i, ci) −
1

β

N
∑

i=1

log(χi(c̄))

The first term of the function defined above is (minus)

the sum of all the similarities between a point and its

exemplar, while the second term is introduced to avoid

any configuration in which an exemplar does not belong

to the cluster that itself represents, that is, an exemplar

must be the exemplar of itself. This is granted by defin-

ing the function χi(c̄) as

χi(c̄) =

{

0 ci �= i ∩ ∃ j : cj = i

1 otherwise
,

and by taking the log function of it and summing it

over all the nodes, so that the energy becomes infinite if

at least an exemplar is represented by a different exem-

plar. The parameter b plays formally the role of the

inverse of the temperature in a thermodynamical sys-

tem, and thus determines the level of thermal noise act-

ing on the system. This means that varying this

parameter, but keeping it finite, allows the algorithm to

accept configurations of the clusters that do not exactly

corresponds to minima of the energy function. We con-

sider here only the optimal case of zero temperature, i.

e., b ® ∞ (for a general and exhaustive treatment of the

cavity method see, for example [52]).

Once the Cavity equations are written one is left with

two coupled update rules for each couple of nodes (i, j):

rt+1
i→j = S(i, j) − max

k�=j

(at
k→i + S(k, i))

at+1
j→i = min

⎛

⎝0, rt
j→j +

∑

k �=i,j

max(0, rt
k→j)

⎞



.

These update rules represents messages that the nodes

are exchanging between iteration t and t+1, with rt
i→j

and at
j→i representing respectively the energetic “com-

petition” between node i and all the other nodes except

j to be the exemplar of node j and the gain in the total

energy of the system if node j is represented by node i.

The notation i ® j indicates that the message is sent

from node i toward node j. When the update equations

converge, then the value of each ci, i = 1,..., N, is

obtained summing over all the messages arriving at

node i and maximizing the sum. The diagonal elements

of the similarity matrix, that are not constrained to be

equal to the unity, play the role of an effective cost to
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every chosen exemplar, and thus a cost for the total

number of clusters found. They are a fine-tuning for the

selection of the total number of clusters found by AP.

In our study we chose to consider every data point a

priori equally probable to be an exemplar, so we set S(i,

i) = p ∀ i = 1,..., N. Varying the parameter p from very

large (negative) values up to positive values gives the

range of total clusters from 1 to N, and we interpret a

stability in the total number of clusters under changes

of this parameter as a genetically meaningful grouping

of the data, as discussed in the Results section. The

similarity matrix S was obtained using the “Deletions”

distance that had turned out to be the most accurate

distance. Linear combinations of the various distances

introduced in the previous section were also considered,

but the overall result still favors the Deletions distance.

We performed also a comparison of AP with other

“classical” clustering algorithms, such as K-Means and

Hierarchical clustering. We considered the performance

with respect to the experts’ classification as defined in

SpolDB4 [23,33] and identified that AP found clusters

with much lower error (see Additional File 3). The

script for computing the distance matrices of SpolDB4

database and performing the analysis with AP was writ-

ten in Matlab as a self-contained script, the bare AP

algorithm for Matlab is available from the authors Frey

and Dueck.

Additional material

Additional file 1: Plot of similarity to their reference for patterns

assigned as the expert classification (Green), patterns not assigned

due to ambiguity (Gray) and patterns assigned differently than the

expert classification (Red).

Additional file 2: SpolDB4 new assignations, using the previously

identified references or the newly identified ones.

Additional file 3: Mean similarity of patterns with their

representative as a function of the cluster size, and for different

clustering methods (AP: Affinity Propagation; Bio: Bionumerics; KM:

K-Means).
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