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Abstract

Background: Usher syndrome (USH) combines sensorineural deafness with blindness. It is inherited in an

autosomal recessive mode. Early diagnosis is critical for adapted educational and patient management choices, and

for genetic counseling. To date, nine causative genes have been identified for the three clinical subtypes (USH1,

USH2 and USH3). Current diagnostic strategies make use of a genotyping microarray that is based on the

previously reported mutations. The purpose of this study was to design a more accurate molecular diagnosis tool.

Methods: We sequenced the 366 coding exons and flanking regions of the nine known USH genes, in 54 USH

patients (27 USH1, 21 USH2 and 6 USH3).

Results: Biallelic mutations were detected in 39 patients (72%) and monoallelic mutations in an additional 10

patients (18.5%). In addition to biallelic mutations in one of the USH genes, presumably pathogenic mutations in

another USH gene were detected in seven patients (13%), and another patient carried monoallelic mutations in

three different USH genes. Notably, none of the USH3 patients carried detectable mutations in the only known

USH3 gene, whereas they all carried mutations in USH2 genes. Most importantly, the currently used microarray

would have detected only 30 of the 81 different mutations that we found, of which 39 (48%) were novel.

Conclusions: Based on these results, complete exon sequencing of the currently known USH genes stands as a

definite improvement for molecular diagnosis of this disease, which is of utmost importance in the perspective of

gene therapy.

Background
Usher syndrome (USH, MIM 276900, MIM 276905,

MIM 605472) combines sensorineural hearing impair-

ment with retinitis pigmentosa [1]. In addition, vestibu-

lar dysfunction can be observed in some patients. USH

occurs in ~1/20 000 individuals, and represents 50% of

all monogenic deaf-blindness cases. Three clinical sub-

types can be distinguished. USH type I (USH1) is char-

acterized by severe to profound congenital hearing

impairment, prepubertal onset of retinitis pigmentosa,

and vestibular arreflexia. USH type II (USH2) combines

congenital moderate to severe hearing impairment,

onset of retinitis pigmentosa in the first or second dec-

ade of life, and absence of vestibular dysfunction.
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Finally, USH type III (USH3) patients present with con-

genital or early onset progressive hearing impairment,

variable age of onset and severity of retinitis pigmentosa,

and variable vestibular dysfunction. USH is inherited in

the autosomal recessive mode, and is genetically hetero-

geneous. To date, nine causative genes have been identi-

fied. Mutations in MYO7A [2], USH1C [3,4], CDH23

[5,6], PCDH15 [7,8] and USH1G [9] cause USH1, muta-

tions in USH2A [10], VLGR1 [11] and WHRN [12]

cause USH2, and mutations in USH3A [13] cause

USH3. Mutations in MYO7A [14-16], USH1C [17,18],

CDH23 [6], PCDH15 [17] and WHRN [19] have also

been reported in patients affected by hearing impair-

ment only, while USH2A is also involved in isolated reti-

nitis pigmentosa [20].

The USH1 genes encode the actin-based motor pro-

tein myosin VIIa (USH1B), two Ca2+-dependent trans-

membrane adhesion proteins, cadherin-23 (USH1D) and

protocadherin-15 (USH1F), the PDZ domain-containing

submembrane protein harmonin (USH1C), and the scaf-

fold protein sans that contains ankyrin repeats and a

sterile alpha motif domain (USH1G). The USH2 genes

encode two large transmembrane proteins, usherin

(USH2A) and VLGR1 (very large G protein-coupled

receptor, USH2C), and the PDZ domain-containing sub-

membrane protein whirlin (USH2D). Finally, USH3A

encodes the four-transmembrane-domain protein clarin-

1. Each USH gene encodes several protein isoforms,

except MYO7A and USH1G.

Absence of an early diagnosis of USH is devastating. In

USH1 patients, sign language becomes a less and less

efficient mode of communication as the visual defect pro-

gresses, and ultimately, the patients may become unable

to communicate except by tactile exchanges. As a result

of an early diagnosis of USH1, early bilateral cochlear

implantation allowing the development of an oral mode

of communication and early physical therapy for vestibu-

lar disorders are strongly recommended. The early diag-

nosis is also critical for genetic counseling, educational

orientation and therapeutic management, which may

include retinal gene therapy in the future [21,22]. So far,

a comprehensive molecular diagnosis of USH has been

hampered both by the genetic heterogeneity of the dis-

ease and the large number of exons for six out of the

nine known USH genes. The five USH1, three USH2, and

one USH3 genes are collectively composed of 183, 173,

and five coding exons, respectively [23].

Cremers and collaborators have developed a genotyp-

ing microarray for USH, based on the arrayed primer

extension (APEX) method. This approach, in a first ver-

sion, included the analysis of 298 USH-associated

sequence variants located in eight genes: MYO7A,

USH1C, CDH23, PCDH15, USH1G, USH2A, VLGR1 and

USH3A [24]. The mutations detected by the array

subsequently increased, and currently include 612 pre-

viously identified disease-associated variants in the nine

known USH genes [25]. The selected variants were pre-

valent in the following European countries: Belgium,

Denmark, UK, Germany, Italy, Spain, Switzerland and

Netherlands, and in the USA. The authors could prove

that the chip, with >98% accuracy, is an adaptable and

affordable mutation screening tool. However, the effi-

ciency of the chip was both dependent on the USH sub-

type examined and the studied population, ranging from

30% in the USA to 80% in Denmark in USH1 cases [24].

Recently, Jaijo et al., using an intermediate genotyping

microarray (429 reported mutations), found mutations in

only 34% of the patients tested [26], which is indicative of

a large number of private mutations. Therefore, improve-

ment of the molecular diagnosis is needed.

Alternative strategies include direct sequencing of

USH gene coding exons [27-30]. To determine the most

efficient strategy, some critical information is, however,

still lacking. Is the clinically diagnosed USH subtype a

reliable indication of the causative gene? What is the

frequency of digenic/oligogenic inheritance in this dis-

ease? Such a mode of inheritance is suggested by the

colocalization and direct in vitro interactions of the

USH1 proteins [31-39], and of the USH2 proteins

[40,41]. In a few USH1 patients, digenic inheritance

involving PCDH15 and CDH23 has indeed been

reported [42]. To address these issues, we undertook a

large-scale mutation screening of all currently known

USH genes in a cohort of 54 USH patients.

Subjects and Methods
Subjects

Fifty-four unrelated Caucasian patients including five

patients originating from Maghreb were included in the

study. Most patients were referred to Armand-Trous-

seau Children’s Hospital in Paris, and other patients

were referred to genetic consultations throughout

France. All patients were tested by audiograms and elec-

troretinogram. Auditory function was assessed by oto-

scopy, tympanometry, standard pure tone audiometry,

and recording of auditory brainstem responses and otoa-

coustic emissions. The cochlear origin of the hearing

impairment was confirmed by auditory brainstem

responses, and by the absence of otoacoustic emissions.

USH was diagnosed on the basis of simultaneous occur-

rence of sensorineural deafness and retinal degeneration.

Scrutiny of the time of onset, evolution and severity of

the hearing impairment, and quality of vestibular

responses enabled to assign the patients to one of the

three clinical types of the disease [43]. Patients were

considered as USH3 when their hearing impairment had

been detected in adulthood and showed clear progres-

siveness. For these patients, vestibular function
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determined by caloric tests was normal. Parents of most

of the patients were available for the study, and had

normal hearing. This study was approved by the local

ethics committee, and written consent for genetic test-

ing was obtained from adult probands or parents of

minor patients.

PCR amplification and sequencing

Genomic DNA was extracted from peripheral blood

using standard procedures. The coding exons and flank-

ing intronic sequences of all nine USH genes were

amplified and sequenced using forward and reverse pri-

mers (primer sequences and conditions available upon

request). We also searched for the previously reported

684 kb deletion in PCDH15 using the reported primers

[44]. Sequences were run on ABI 3100 DNA analyzer,

and assembled using ABI Prism Seqscape 2.1 to Gen-

bank reference sequences [45].

Control DNAs

The genomic DNAs from 153 unaffected Caucasian

control individuals were sequenced (306 control alleles).

For the mutations possibly involved in oligogenic inheri-

tance, DNAs from 333 healthy unrelated Caucasian indi-

viduals were used as controls. For the mutations present

in patients originating from Maghreb, the DNAs from

95 Moroccan and 91 Algerian healthy unrelated indivi-

duals were used as controls.

In silico analysis of sequence variants

The SIFT (Sorting Intolerant from Tolerant) [46] and

Polyphen [47] software programs were used to predict

the influence of any amino acid substitution on the pro-

tein structure and function. NetGene2 [48] and “Splice

site prediction by neural network” [49] interfaces were

used to predict the influence of nucleic acid substitu-

tions on splice donor and acceptor sites. Presence of

Exonic Splicing Enhancers (ESE) was detected using ESE

Finder [50].

Segregation analysis

Segregation of all sequence variants identified in the

patients was studied by sequencing the corresponding

DNA fragments in the parents and other relatives. In all

patients carrying two distinct mutations in a given USH

gene, biallelic transmission was confirmed by the segre-

gation analysis.

Mutation nomenclature

The mutation nomenclature complies with the mutation

nomenclature correction tool Mutalyzer [51] according

to the HGVS Guidelines & Recommendations [52]. The

+1 position in mutation numbering corresponds to the

A of the ATG initiation codon.

Protein Accession numbers

MYO7A, [Swiss-Prot:Q13402]; USH1C, [Swiss-Prot:

Q7RTU8]; CDH23, [Swiss-Prot:Q9H251]; PCDH15-CD1,

[Swiss-Prot:Q96QU1]; PCDH15-CD2, [NCBI-RefSeq:

NP_001136241.1]; PCDH15-CD3, [Swiss-Prot:C9J4F3];

USH1G, [Swiss-Prot:Q495M9]; USH2A, [Swiss-

Prot:075445]; VLGR1, [Swiss-Prot:Q8WXG9]; WHRN,

[Swiss-Prot:Q9P202]; USH3A, [Swiss-Prot:P58418] and

[Swiss-Prot:P58418-1] for “a” and “c” variants, respectively.

Results
Mutation analysis: high prevalence of novel mutations

We analyzed the nine USH genes in a cohort of 54

French patients, of whom 27 were affected by USH1, 21

by USH2, and six by USH3. From the patient and parent

questionnaires, consanguinity was established for nine

families (see Table 1). Sequencing of the coding and

non coding exons of all currently known USH genes

was carried out in every patient. Screening for predicted

causative missense and splice site mutations was per-

formed using prediction software programs. Amino acid

substitutions were considered likely to be pathogenic

missense mutations when predicted possibly or probably

deleterious by Polyphen software and not-tolerated by

the SIFT program. Nucleotide variations were consid-

ered likely to be splice site mutations when predicted

highly confident donor or acceptor site mutations by

Netgene2 and “Splice site prediction by neural network”

programs. These sequence variants were ultimately clas-

sified as presumably pathogenic mutations only if the

affected amino acid residues were evolutionarily con-

served (Additional file 1 Figures S1 to S3) and/or these

variants were not found in the control individuals (see

Subjects and Methods).

A total of 81 distinct, presumably pathogenic muta-

tions were detected, specifically, 16 nonsense mutations,

five nucleotide duplications, 17 frame-shifting deletions,

seven splicing defect-causing mutations, 34 missense

mutations, and one isocoding variation. Thirty-nine

(48%) of these mutations, i.e. 27% to 100% of the muta-

tions found in each USH gene, had not been previously

reported (Tables 2, 3 and 4, Figure 1). In addition, 103

amino acid substitutions were classified as presumably

nonpathogenic sequence variants, including 33 new var-

iants and six variants that had previously been reported

as pathogenic mutations (Table 5). Numerous, presum-

ably neutral, isocoding and intronic variants were also

observed (listed in Additional file 2, Table S1).

Twenty-six pathogenic or presumably pathogenic

mutations in MYO7A were found in 19 patients, specifi-

cally, eight nonsense mutations, one nucleotide duplica-

tion, five nucleotide deletions, four splice site mutations,

and eight missense mutations. Seven of these mutations

had not been previously reported, including two
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Table 1 Genotypes of USH patients

Genes MYO7A USH1C CDH23 PCDH15 USH1G USH2A VLGR1 WHRN USH3A

Patient USH
type

U37 I [p.R666X] + [p.
E1917X]

U57 I [p.C1198X]+
[p.R1240Q]

P0485 I [p.Q1798X] +
[p.E1917X]

U14 C I [p.R972X] + [p.
R972X]

U9 C I [p.K164X] +
[p.K164X]

U36 I [p.R2024X] +
[p.G519D]

[p.R1060W]

U20 I [p.R669X] + [p.
R1883Q]

P0505 I [p.Q1798X] +
[p.A2009fsX32]

S1556 C I [p.H133fsX7]
+ [p.
H133fsX7]

S1295 C I [p.
Y1302fsX97]
+ [p.
Y1302sX97]

[p.G1301V] [p.Q5459H]

P0504 I [p.D75fsX31] +
[p.R1240Q]

[p.R357W]

U45 I [p.D75fsX31] +
[p.T165M]

P0411 C I [c.2283-1G>T]
+ [c.2283-
1G>T]

[p.D4707Y]

P0070 I [p.G163R] + [p.
A198T]

P0052 I [c.1690
+1G>A] + [p.
F1963del]

U3 I [p.L2186P] [p.L16V] [p.C3307W]

DID C I [p.
R80fsX69] +
[p.
R80fsX69]

[p.R3043W]

U47 I [p.
R80fsX69] +
[p.R103H]

P0469 I [p.
E2135fsX3]
+ [c.6050-
9G>A]

S1212 I [p.R1379P] +
[p.D2639G]

U38 I [p.R991X]
+ [p.
R991X]

S1530 I [p.
R1273S]

P0257 I [p.W38X]
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Table 1 Genotypes of USH patients (Continued)

S1273 I [p.
D29fsX29] +
[p.
D29fsX29]

U46 I

U50 I

S1823 C I

P0486 II [p.A457V] +
[p.K269del]

U6 II [p.E3562X] +
[p.E767fsX21]

U24 II [p.P1220L] [p.S1307X] +
[p.C536R]

U48 II [p.W3955X] +
[p.
R2509fsX19]

P0483 II [p.E1492X] +
[p.T3571M]

P0418 II [p.K268R] [p.S5030X]

U56 C II [p.
T2991fsX61]
+ [p.
T2991fsX61]

U42 II [p.E767fsX21] +
[p.
Y4128fsX24]

P0449 II [p.E767fsX21] +
[p.C575Y]

P0493 II [p.H308fsX16]
+ [p.T4809I]

P0432 II [p.R1189W] [p.
M1344fsX42]

U51 II [p.V218E] + [p.
R317R]

P0511 II [p.T3571M] +
[p.T352I]

U49 II [p.E4321X] +
[p.Q753fsX8]

P0473 II [p.P522fsX8]
+ [p.
M5890fsX10]

[p.S11R]

U58 II [p.F112fsX29]
+ [p.H3399P]

P0463 II [p.
E4186fsX17]

U10 II

U53 II [p.
P246fsX13] +
[p.
P246fsX13]

U19 C II [p.H755Y]

P0426 II

U21 III [p.Y1730fsX6]
+ [c.10586-
1G>C]
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nonsense mutations (p.K164X, p.C1198X), a nucleotide

duplication (c.397dupC; p.H133fsX7), a nucleotide dele-

tion c.3904delT (p.Y1302fsX97), a nucleotide substitu-

tion (c.1690+1G>A) predicted to alter the splice donor

site of intron 14, and two missense mutations (p.K268R

and p.P1220L) that change amino acid residues located

in the motor head and the first MyTH4 domain of the

myosin VIIa tail, respectively (Tables 2, 3 and Figure 1).

Three distinct pathogenic or presumably pathogenic

mutations in USH1C were detected in three patients, spe-

cifically, a nucleotide duplication (c.238_239dupC; p.

R80fsX69) already reported in several patients [3,4,27,53],

a known missense mutation (p.R103H) affecting an

amino acid residue located in the PDZ1 domain of the

protein [27], and a novel missense mutation (p.R357W),

predicted to affect the first coiled-coil domain of the pro-

tein. These mutations are expected to affect the three

classes of harmonin isoforms (Tables 2, 3, Figure 1) [4].

Eight pathogenic or presumably pathogenic mutations

in CDH23 were found in six patients, specifically, a pre-

viously reported mutation that affects splicing (c.6050-

9G>A) [54], a novel nucleotide deletion (c.6404_64

05delAG; p.E2135fsX31), and six missense mutations

[55,56], four of which (p.R1189W, p.R1379P, p.D2639G,

and p.R3043W) had not been previously reported. They

affect amino acid residues located in the 11th, 13th and

25th cadherin repeat and the extracellular region adja-

cent to the transmembrane domain (3065-3085), respec-

tively (Tables 2, 3 Figure 1). Intriguingly, the p.R1060W

mutation, which affects a residue in the 10th cadherin

repeat that belongs to a canonical motif (DRE) predicted

to bind Ca2+ [57], has previously been reported in an

isolated form of deafness, DFNB12 (cited in Astuto

et al. [55]).

Two pathogenic or presumably pathogenic mutations

in PCDH15, specifically, a nonsense mutation (p.R991X)

[27] and a novel missense mutation (p.R1273S), were

found in two patients. The missense mutation affects an

amino acid residue located immediately after the 11th

cadherin repeat (Tables 2, 3, Figure 1). The large geno-

mic rearrangement in PCDH15 previously reported by

Le Guedard et al. [44] was not detected in this group of

patients.

Three pathogenic or presumably pathogenic mutations

in USH1G were found in three patients, specifically, an

already reported nonsense mutation (p.W38X) [58], a

novel nucleotide duplication (c.84dupC; p.D29fsX29),

and a novel sequence variant (c.46C>G; p.L16V). This

variant was absent from the control DNAs (0/666

alleles) and, according to the prediction software pro-

grams (NetGene2 and ESE finder), should create a splice

donor site resulting in a premature stop codon at codon

position 17 (Tables 2, 3; Figure 1).

Twenty-five pathogenic or presumably pathogenic

mutations in USH2A were found in 17 patients includ-

ing three USH3 patients, specifically, five nonsense

mutations, one nucleotide duplication, six nucleotide

deletions [59], two splice site mutations, 10 missense

mutations, and one isocoding variation possibly creating

a splice donor site (Tables 2, 3). All these mutations

affect the extracellular region of usherin (Figure 1). Nine

mutations had not been previously reported, specifically,

five frame-shifting deletions (c.4030_4037del

ATGGCTGG/p.M1344fsX42, c.5189_5199delATATGT

TTCAT/p.Y1730fsX6, c.7522delT/p.R2509fsX19, c.89

70_8971delCA/p.T2991fsX61, and c.12381_12382delCT/

p.Y4128fsX24), one splice acceptor site mutation

(c.10586-1G>C) that is expected to result in exon 54

skipping and premature termination of the protein, and

three missense mutations (p.C575Y, p.G1301V, p.

C3307W) that affect amino acid residues located in the

14th fibronectin type III domain and the trideca-di-

cysteine domain (residue 3192 to 3371) between the

18th and the 19th fibronectin type III domains (Figure

1). Notably, the isocoding mutation (c.949C>A; p.

R317R) has been predicted to be pathogenic by Pen-

nings [60] and considered as nonpathogenic by Dreyer

[28]. Segregation analysis in our family was compatible

with a pathogenic effect of this mutation (Additional file

1 Figure S4).

Eleven pathogenic or presumably pathogenic muta-

tions in VLGR1 were detected in eight patients including

two USH3 patients. All were novel mutations, specifi-

cally, a nonsense mutation (p.E4321X), a nucleotide

duplication (c.1563dupT; p.P552fsX8), four nucleotide

deletions (c.333_334delTT/p.F112fsX29, c.2258_2270del

Table 1 Genotypes of USH patients (Continued)

U30 III [p.E767fsX21] +
[p.R303H]

S1226 III [p.G2752R] +
[c.5776+1G>A]

P0239 III [p.N4885S]

P0484 III [p.D1944N]

P0069 III [p.R379W]

Novel mutations are in bold. C (2nd column) denotes consanguinity.
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Table 2 Pathogenic DNA variants

Gene Nucleotide change Exon Amino acid change Frequency
in
USH alleles
(×/108)

Frequency in
control
alleles

Patient origin
& reference

MYO7A

223delG 4 D75fsX31 2 Australia, Italy, France [78]

397dupC 5 H133fsX7 2 This study

490A>T 6 K164X 2 This study

592G>A 6 A198T + splice
defect

1 0/306 Algeria [27]

1556G>A 14 G519D/splice defect 1 0/306 USA, France [63]

1690+1G>A 14 Splice defect 1 This study

1996C>T 17 R666X 1 Great Britain, Denmark [62]

2005C>T 17 R669X 1 USA [24]

2283-1G>T 20 Splice defect 2 Algeria [27]

2914C>T 24 R972X 2 Pakistan [79]

3594C>A 28 C1198X 1 This study

3904delT 30 Y1302fsX97 2 This study

5392C>T 39 Q1798X 2 Denmark, German, Great Britain/France
[62]

5749G>T 42 E1917X 2 unknown [80]

6025delG 44 A2009fsX32 1 Spain [63]

6070C>T 45 R2024X 1 unknown [80]

USH1C

238_239dupC 3 R80fsX69 3 Pakistan, Europe, Guinea [4]

CDH23

6050-9G>A 46 Splice defect 1 Germany [54]

6404_6405delAG 47 E2135fsX31 1 This study

PCDH15

2971C>T 22 R991X 2 France [27]

USH1G

84dupC 1 D29fsX29 2 This study

113G>A 1 W38X 1 USA [58]

USH2A

920_923dupGCCA 6 H308fsX16 1 Denmark [81]

2299delG 13 E767fsX21 4 Europe, USA, Africa, China [10]

3920C>G 18 S1307X 1 France [82]

4030_4037delATGGCTGG 18 M1344fsX42 1 This study

4474G>T 21 E1492X 1 Spain [83]

5189_5199delATATGTTTCAT 26 Y1730fsX6 1 This study

5776+1G>A 28 Splice defect 1 Norway [28]

7522delT 40 R2509fsX19 1 This study

8970_8971delCA 45 T2991fsX61 2 This study

10586-1G>C 54 Splice defect 1 This study

10684G>T 54 E3562X 1 Denmark, Norway [28]

11864G>A 61 W3955X 1 Netherlands [84]

12381_12382delCT 63 Y4128fsX24 1 This study
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AAGTGCTGAAATC/p.Q753fsX8,

c.12552_12553delGG/p.E4186fsX17), and

c.17668_17669delAT/p.M5890fsX10), and five missense

mutations (p.D1944N, p.H3399P, p.D4707Y, p.N4885S,

p.Q5459H) that all affect amino acid residues located in

the large extracellular region of the protein, between the

13th and 14th b-Calx domains, in the 4th Epilepsy Asso-

ciated Repeat domain, in the 32nd b-Calx domain,

between the 32nd and 33rd b-Calx domains, and in the

35th b-Calx domain, respectively (Tables 2, 3, Figure 1).

Three pathogenic or presumably pathogenic mutations

in WHRN were detected in three patients including one

USH3 patient, specifically, a novel deletion (c.737delC;

p.P246fsX13), and two novel missense mutations (p.

S11R and p.R379W) that affect amino acid residues

located in the N-terminal Ala/Gly/Ser-rich stretch (aa 9-

31) and immediately after the PDZ2 domain, respec-

tively (Tables 2, 3, Figure 1). Notably, these missense

mutations only affect the longer whirlin isoform [19],

which is a component of the ankle link molecular com-

plex together with VLGR1 and usherin [40,41].

No mutations in USH3A were detected in our series

of USH patients.

Transmission modes: evidence for digenic/oligogenic

inheritance in some patients

We found mutations in 49 out of 54 (91%) USH

patients, specifically, in 24 out of 27 (89%) USH1

patients, 19 out of 21 (90%) USH2 patients, and all six

(100%) USH3 patients (see Table 1). Mutations in

MYO7A, USH1C, CDH23, PCDH15, and USH1G, were

found in 55%, 7%, 7%, 7%, and 4% of the USH1 cases,

respectively. Mutations were detected on both alleles in

21 USH1 patients (including the six consanguineous

families), and on one allele in the remaining three

USH1 patients. Moreover, one of these patients (U3)

harboured monoallelic, presumably pathogenic muta-

tions in two different USH1 genes (see below).

Mutations in USH2A, VLGR1 and WHRN were found in

57%, 19% and 9.5% of the USH2 cases, respectively.

Notably, one USH2 patient (P0486) carried biallelic

mutations in MYO7A. Mutations were detected on both

alleles in 15 USH2 patients (including a consanguineous

family), and on one allele in the remaining four USH2

patients. Finally, as regards the USH3 patients, biallelic

mutations in USH2A and monoallelic mutations in

VLGR1 or WHRN were found in three patients, two

patients, and one patient, respectively.

One USH1 and two USH2 patients were heterozygotes

for mutations in two or three USH genes, suggesting a

possible digenic/oligogenic inheritance of the syndrome.

In the USH2 patients, however, segregation analysis did

not support digenic inheritance. Patient P0418 carries a

nonsense mutation in USH2A (p.S5030X) and a mis-

sense mutation in MYO7A (p.K268R), but his brother,

who is also clinically affected, does not carry the

MYO7A mutation. Patient P0432 has a

c.4030_4037delATGGCTGG (p.M1344fsX42) mutation

in USH2A and a missense mutation in CDH23 (p.

R1189W), but his father, who has neither deafness nor

retinitis pigmentosa, also carries these two mutations,

and his clinically affected sister does not carry the muta-

tion in CDH23. In the USH1 patient, we found three

presumably pathogenic mutations in MYO7A

(c.6657T>C), USH1G (c.46C>G; p.L16V) and USH2A

(c.9921T>G). Her father carries the mutations in

MYO7A and USH2A without displaying symptoms of

the disease, whilst her unaffected mother carries the

mutation in USH1G. The mutations in MYO7A, USH1G

and USH2A were not found in 666 control alleles. Of

the four siblings, the affected girl is the only one who

carries the mutations in MYO7A and USH1G, and, all

the more, the mutations in the three genes (Figure 2).

Therefore, a combination of monoallelic mutations in

three USH genes may be responsible for the disease in

this patient.

Table 2 Pathogenic DNA variants (Continued)

15089C>A 70 S5030X 1 France [66]

VLGR1

333_334delTT 3 F112fsX29 1 This study

1563dupT 9 P522fsX8 1 This study

2258_2270delAAGTGCTGAAATC 12 Q753fsX8 1 This study

12552_12553delGG 62 E4186fsX17 1 This study

12961G>T 64 E4321X 1 This study

17668_17669delAT 82 M5890fsX10 1 This study

WHRN

737delC 2 P246fsX13 2 This study

Novel mutations are in bold.

Bonnet et al. Orphanet Journal of Rare Diseases 2011, 6:21

http://www.ojrd.com/content/6/1/21

Page 8 of 19



Table 3 Presumably pathogenic DNA variants

Gene Nucleotide
change

Exon Amino acid
change

Protein domain Frequency
in
USH alleles
(×/108)

Frequency in
control
alleles

Patient origin
& reference

MYO7A

487G>C 6 G163R Motor head 1 0/306 Algeria [27]

494C>T 6 T165M Motor head 1 0/306 Great Britain, France [58]

803A>G 8 K268R Motor head 1 0/306 This study

805_807delAAG 8 K269del Motor head 1 0/306 Italy, France [63]

1370C>T 13 A457V Motor head 1 0/306 Ireland, France [63]

3659C>T 29 P1220L MyTH4 (1) 1 0/666 This study

3719G>A 29 R1240Q MyTH4 (1) 2 0/306 Denmark, Great Britain/France
[62]

5648G>A 41 R1883Q MyTH4 (2) 1 0/306 USA [58]

5887_5889delTTC 43 F1963del FERM (2) 1 Europe, USA [24]

6657T>C 48 L2186P FERM (2) 1 0/666 France [85]

USH1C

308G>A 4 R103H PDZ1 1 0/306 France [27]

1069C>T 13 R357W Coiled-coil 1 0/498 This study

CDH23

2263C>T 20 H755Y cd7 1 0/306 USA [56]

3178C>T 26 R1060W cd10 1 0/626 Europe [55]

3565C>T 29 R1189W cd11 1 0/306 This study

4136G>C 33 R1379P cd13 1 0/306 This study

7916A>G 55 D2639G cd25 1 0/306 This study

9127C>T 62 R3043W adjacent to TM
(extracellular)

1 0/490 This study

PCDH15

3817C>A 29 R1273S cd11 1 0/306 This study

USH1G

46C>G 1 L16V 1 0/666 This study

USH2A

653T>A 4 V218E Nter laminin 1 0/306 Great Britain [86]

908G>A 6 R303H Nter laminin 1 0/306 USA [87]

949C>A 6 R317R Nter laminin 1 0/306 Netherlands [60]

1055C>T 6 T352I Nter laminin 1 0/306 Norway [28]

1606T>C 9 C536R 1st laminin EGF-like 1 0/306 Denmark [81]

1724G>A 10 C575Y 2nd laminin EGF-
like

1 0/306 This study

3902G>T 18 G1301V 14th FnIII 1 0/484 This study

8254G>A 42 G2752R 3rd laminin EGF-like 1 0/306 Japan [88]

9921T>G 50 C3307W 18th-19th FnIII 1 0/482 This study

10712C>T 54 T3571M 20th FnIII 2 0/306 Spain [89]

14426C>T 66 T4809I 33rd FnIII 1 0/306 Canada [90]

VLGR1

5830G>A 28 D1944N 13th -14th b-Calx 1 0/306 This study

10196A>C 49 H3399P 4th EAR 1 0/306 This study
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Seven patients out of 54 (13%) carried two presumably

pathogenic mutations in an USH gene, plus one or two

additional mutations in another USH gene. Taking into

account only the 39 patients for whom biallelic muta-

tions have been identified, 18% (7 out of 39) carry addi-

tional mutations. Specifically, five USH1 patients carried

biallelic mutations in an USH1 gene plus one or two

additional mutations in another USH1 (three patients)

or USH2 (two patients) gene, and two USH2 patients

carried biallelic mutations in USH2 genes plus one addi-

tional, presumably pathogenic mutation in an USH1 or

an USH2 gene (Table 1). Parents and siblings available

in six out of seven families indeed showed that the two

mutations present in the same gene originated from one

parent each (Figure 3). The mutations found in the

genes that were mutated on both alleles in the patients

consist of two nonsense mutations, five nucleotide dele-

tions, one splice site mutation, and three missense

mutations. The eight additional mutations found in

these patients were amino acid substitutions that were

predicted “probably damaging” and “not tolerated” by

Polyphen and SIFT program, respectively. One of these

mutations, p.R1060W in CDH23, has already been

reported in USH patients [55].

Discussion
The major goal of the study was to design a powerful

and reliable strategy for molecular diagnosis of USH.

For that purpose, some essential, so far missing informa-

tion was gathered by: i) comparing the strategy for

mutation detection currently in use with the here devel-

oped USH exome sequencing (including splice sites), ii)

determination of whether the phenotype can restrict the

mutation screening to the USH genes corresponding to

the clinical subtype in a given patient, and iii) defining

the possible existence of digenic/oligogenic inheritance

of the disease in some patients.

We found mutations in eight of the currently known

nine USH genes, in 49 out of 54 (91%) patients (Table

1). Two or more mutations were identified in 41

patients, including 39 patients (72%) with biallelic muta-

tions, and one mutation was found in the remaining

seven patients (13%), that is a total of 81 different muta-

tions. Current diagnostic strategies use a genotyping

microarray based on the arrayed primer extension

method [24]. Were the international USH genotyping

microarray used to identify the mutations, only 30 out

of the 81 mutations (37%) would have been possibly

detected because of the high prevalence of novel muta-

tions, whatever the USH clinical type. Only 9 mutations

previously reported as recurrent were detected in our

series of patients (i.e. 11% of the mutations), specifically,

c.1996C>T, c.223delG, c.1556G>A, c.494C>T,

c.3719G>A and c.5749G>T in MYO7A, c.238_239dupC

in USH1C, and c.2299delG and c.10712C>T in USH2A.

Therefore, in the process of designing any strategy for

USH molecular diagnosis, taking into account the high

prevalence of novel mutations appears to be of major

importance.

Previous mutation research studies performed in

patients referred to medical genetic clinics showed high

proportions of mutations for MYO7A, CDH23 and

PCDH15 in USH1 patients [27], specifically, 29%-55%

for MYO7A [61-64], 19%-35% for CDH23 [58], 11%-15%

for PCDH15 [65], and for USH2A in USH2 patients

[28,60,66], whereas the implication of VLGR1 and

WHRN in the latter was minor [11,12]. The present ana-

lysis confirms these results by showing a major implica-

tion of MYO7A in USH1 (55% of the cases), and of

USH2A in USH2 (62% of the cases).

Surprisingly, mutations were found in genes that did

not fit the clinically diagnosed USH type. None of the

six patients diagnosed as USH3 on the basis of the post-

lingual onset and progressive nature of the deafness, and

the absence of vestibular dysfunction (see Subjects and

methods) carried a mutation in USH3A. Yet, mutations

in USH2 genes were present in all of them, and with a

gene distribution similar to that observed in USH2

patients. This finding, which concerns six out of 24

patients carrying mutations in USH2 genes, calls for a

revision of the USH2 clinical features. Along the same

line, one patient diagnosed as USH2, because he did not

have a vestibular dysfunction, carried biallelic missense

mutations in an USH1 gene, MYO7A. The two

Table 3 Presumably pathogenic DNA variants (Continued)

14119G>T 70 D4707Y 32nd b-Calx 1 0/446 This study

14654A>G 71 N4885S 32nd -33rd b-Calx 1 0/486 This study

16377G>T 77 Q5459H 35th b-Calx 1 0/402 This study

WHRN

33C>G 1 S11R A/G/S rich region 1 0/494 This study

1135C>T 4 R379W PDZ2 1 0/306 This study

Novel mutations are in bold.
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mutations (p.A457V and p. K269del) affect amino acid

residues located in the motor head of myosin VIIa, and

have previously been reported in USH1 patients [63].

They may preserve a residual activity of the protein,

thus causing less severe hearing, balance and visual

impairments. Alternatively, one of these mutations or

both might be deleterious for the myosin VIIa activity

associated with the ankle-link protein complex that

underlies the USH2 phenotype [40], but not with the

transient hair bundle lateral-link and tip-link molecular

complexes that are involved in USH1 pathogenesis.

These phenotype/genotype discrepancies further argue

in favor of a comprehensive mutation screening

Table 4 Distribution of the pathogenic and presumably

pathogenic mutations

Pathogenic and presumably pathogenic mutations
(Novel mutations)

MYO7A 26 (7)

USH1C 3 (1)

CDH23 8 (5)

PCDH15 2 (1)

USH1G 3 (2)

USH2A 25 (9)

VLGR1 11 (11)

WHRN 3 (3)

USH3A 0

Figure 1 Schematic representation of USH1 and USH2 proteins and localization of the novel, presumably pathogenic mutations. The

long isoform of each USH protein is shown. *Splice site mutations. Abbreviations: IQ motifs, isoleucine-glutamine motifs; SAH, stable single a-

helix; MyTH4, myosin tail homology 4; FERM, band 4.1-ezrin-radixin-moesin; PDZ, PSD95, discs large, ZO-1; PST, proline-serine-threonine-rich

region; EC, extracellular cadherin; TM, transmembrane domain; Ank, ankyrin domains; cent, central region; SAM, sterile alpha motif; LamG, laminin

G; LamG/TspN/PTX, N-terminal thrombospondin/pentaxin/laminin G-like domain; LamNT, laminin N-terminal; EGF Lam, laminin-type EGF-like; FnIII,

fibronectin type III; VLGR1, very large G protein-coupled receptor 1; Calx, Ca2+-binding calcium exchanger b; EAR, Epilepsy Associated Repeats;

Ala/Gly/Ser rich, alanine, glycine, and serine rich region; Pro rich, proline rich region.
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Table 5 Presumably neutral missense variants

Gene Nucleotide change Exon Amino acid change Frequency in
USH alleles
(×/108)

Frequency in
control alleles

References

MYO7A

47T>C 3 L16S >10 [58]

905G>A 9 R302H 2 1/494 [78]

4996A>T 36 S1666C >10 U39226

5156A>G 37 Y1719C* 3 2/306 [91]

5860C>A 43 L1954I >10 U39226

USH1C

2192G>A 21 R731Q 1 This study

2457G>C 24 E819D >10 [92]

CDH23

7C>T 1 R3C >10 [55]

1469G>C 14 G490A >10 [55]

1487G>A 14 S496N >10 [55]

3625A>G 30 T1209A* 1 5/486 [55]

3664G>A 30 A1222T 4 [55]

4051G>A 31 D1351N >10 [55]

4310G>A 34 R1437Q 6 [55]

4723A>G 37 T1575A >10 [55]

4858G>A 38 V1620M 1 2/306 [55]

5023G>A 38 V1675I >10 [55]

5411G>A 41 R1804Q >10 [55]

5418C>G 41 D1806E 2 [93]

5692G>A 42 A1898T 1 0/306 This study

5996C>G 45 T1999S >10 [55]

6130G>A 46 E2044K >10 [55]

6197G>A 46 R2066Q 1 0/306 [55]

6329C>T 47 A2110V 1 This study

6596T>A 47 I2199N 1 0/306 This study

6809G>A 48 R2270H 1 This study

6847G>A 49 V2283I 6 [55]

6869C>T 49 T2290M 1 0/306 This study

7073G>A 50 R2358Q >10 [55]

7139C>T 50 P2380L >10 [55]

7762G>C 54 E2588Q 1 1/306 [55]

9049G>A 61 D3017N 1 This study

9373T>C 65 F3125L 1 7/306 [56]

9949G>A 69 A3317T 1 1/306 This study

PCDH15

55T>G 2 S19A >10 [94]

1039C>T 10 L347F 1 3/666 This study

1138G>A 11 G380S >10 This study

1304A>C 11 D435A >10 AL834134

1910A>G 15 N637S 2 [92]

2786G>A 21 R929Q >10 AL834134

4850A>G 34§ N1617S 2 This study

4853A>C 36§ E1618A >10 This study
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Table 5 Presumably neutral missense variants (Continued)

4982A>C 37§ Q1661P >10 This study

USH2A

373G>A 2 A125T >10 [95]

1434G>C 8 E478D 3 [95]

1663C>G 10 L555V* 1 0/306 [96]

1931A>T 11 D644V >10 [95]

4457G>A 21 R1486K >10 AF055580

4994T>C 25 I1665T >10 [89]

6317T>C 32 I2106T >10 [89]

6506T>C 34 I2169T >10 [89]

6713A>C 35 E2238A 6 5/306 [89]

6875G>A 36 R2292H 4 [28]

8624G>A 43 R2875Q 4 [89]

8656C>T 43 L2886F 4 [89]

9008T>C 45 V3003A 1 This study

9262G>A 47 E3088K* 1 3/306 [28]

9296A>G 47 N3099S 4 [89]

9343A>G 47 T3115A 3 5/306 [28]

9430G>A 48 D3144N 4 [89]

9595A>G 49 N3199D 6 [28]

10232A>C 52 E3411A >10 [89]

11504C>T 59 T3835I >10 [28]

11602A>G 60 M3868V >10 [89]

11677C>A 60 P3893T* 1 1/306 [28]

15091C>T 70 R5031W 2 2/306 [28]

15377T>C 71 I5126T* 3 2/306 [87]

VLGR1

365C>T 4 S122L >10 This study

P194H 6 P194H 1 5/468 This study

1033C>A 7 Q345K 1 This study

2261T>C 12 V754A 1 0/306 This study

3289G>A 17 G1097S 1 3/478 This study

3482C>G 19 S1161C 1 0/306 This study

4939A>G 23 I1647V >10 This study

5780C>T 28 T1927M >10 [11]

5851G>A 28 V1951I >10 [11]

5953A>G 28 N1985D >10 [11]

5960C>T 28 P1987L >10 [11]

6012G>T 28 L2004F >10 [11]

6695A>G 30 Y2232C >10 [11]

7034A>G 32 N2345S >10 [11]

7582C>T 33 P2528S 1 1/306 This study

7751A>G 33 N2584S >10 [97]

8291C>T 36 S2764L 6 [11]

8407G>A 37 A2803T 4 [11]

9280G>A 43 V3094I >10 This study

9743G>A 45 G3248D >10 [11]

9650C>T 45 A3217V 2 [11]

10411G>A 49 E3471K >10 [97]

10429G>T 50 D3477Y 1 This study
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Figure 2 Segregation of the mutations in MYO7A, USH1G and USH2A in family U3. Arrow indicates the deaf proband.

Table 5 Presumably neutral missense variants (Continued)

10490A>G 50 Q3497R 1 This study

10577T>C 51 M3526T 3 This study

10936T>C 52 S3646P 3 This study

11599G>A 56 E3867K >10 This study

12269C>A 59 T4090N 2 This study

14029T>C 69 F4677L 1 2/478 This study

14905T>C 73 W4969R 2 This study

17626G>A 82 V5876I >10 This study

18475A>G 88 M6159V 2 This study

WHRN

229A>T 1 T77S 1 1/468 [98]

979C>A 4 L327I 1 This study

1318G>A 6 A440T >10 [99]

1838T>C 9 M613T >10 This study

2348T>C 10 V783A >10 [99]

2388C>A 10 N796K >10 [99]

Novel mutations are in bold. * Mutations considered pathogenic by prediction Software, but excluded by segregation studies. § Exons 34, 36 and 37 are specific

to isoforms CD1, CD2 and CD3, respectively.

The pathogenicity of several exonic variants found in our patients and predicted to be pathogenic in previous studies and/or by prediction software was further

investigated. The p.T1209A missense mutation in CDH23 has previously been reported in two affected families and considered as pathogenic [55,58]. However,

we found it in five of 486 control alleles from French and Maghreban populations. The p.Y1719C missense mutation in MYO7A seems to represent a frequent

sequence variant in the Moroccan population, with an estimated carrier frequency of 0.07 [100], and was observed in three out of 306 control alleles. The p.

R302H mutation in MYO7A, which affects a residue within a non-conserved region of the motor domain, was detected in one out of 494 control alleles.

Moreover, two of five different MYO7A cDNA clones isolated from three independent libraries were found to encode a histidine residue at codon position 302

[101], which further argues in favor of a non-pathogenic sequence variant. The p.E3088K missense mutation in USH2A, previously described by Dreyer et al., was

present in three out of 306 control alleles, which argues in favor of a non-pathogenic sequence variant [26,28]. The missense mutation p.I5126T in USH2A has

been reported as likely pathogenic [87]. We found it in two USH1 patients, who in addition carried two pathogenic mutations in MYO7A. We detected it in two

individuals from the French control population, suggesting that it is a non-pathogenic sequence variant. The p.L555V mutation in USH2A has been found in

homozygous state in one Spanish patient, together with a biallelic splice site variant (c.1841-2A>G) [26]. Numerous, presumably neutral, isocoding and intronic

variants were also observed (listed in Additional file 2Table S1).

Bonnet et al. Orphanet Journal of Rare Diseases 2011, 6:21

http://www.ojrd.com/content/6/1/21

Page 14 of 19



procedure that includes genes seemingly inconsistent

with the clinical classification of USH currently in use.

Notably, our study has revealed one case of likely oli-

gogenic inheritance for USH1, involving MYO7A and

USH1G, and possibly USH2A. Three cases of digenic

inheritance of USH1 have been reported so far [42], all

caused by mutations in CDH23 and PCDH15, in agree-

ment with the contribution of cadherin-23 and proto-

cadherin-15 to the hair bundle transient lateral links

and tip-links [31,32,36,67-69]. The pathogenicity of the

p.T1209A mutation in CDH23 [18,55] is, however, ques-

tionable since we found it in five alleles from the control

population. The c.5601delAAC mutation in PCDH15,

leading to an in frame-deletion of a threonine residue

(p.T1868del) [42] within the intracellular domain of the

protocadherin-15 CD1 isoform, also warrants a special

mention. Three protocadherin-15 isoforms (CD1-3) that

differ in their intracytoplasmic regions have been

reported [69]. Already two presumably pathogenic

mutations (p.M1853L and p.T1868del) [42,70] have

been found in exon 34 that is specific for CD1. Inciden-

tally, the p.T1868del mutation was not only involved in

USH1, but has also been found, in homozygous state, in

a deaf patient presenting with vestibular arreflexia and

without retinitis pigmentosa (C. Bonnet, unpublished).

The CD2 isoform(s) of protocadherin-15 make(s) the

transient kinociliary links [71], whereas the protocad-

herin-15 isoforms that make transient interstereocilia

links and the tip-links are still unknown. The mutations

in exon 34, however, point to an essential biological role

of CD1, or of an as yet uncharacterized protocadherin-

15 isoform that contains the amino acid sequence

encoded by this exon, in the hair cells.

Therefore, even though non-monogenic inheritance of

USH appears to be rare, it has to be taken into consid-

eration in the molecular diagnosis strategy. In addition,

ten patients had presumably pathogenic mutations in

two different USH genes. Seven of them had biallelic

mutations in one gene, and carried an additional muta-

tion in a second and, for one of them, a third USH

gene. None of these additional mutations were nonsense

or frame-shifting mutations, but the conservation of the

corresponding amino acid residues in the orthologous

genes (ush2a, myo7a, whrn) of Ciona savignyi [72], a

cnidarian which is evolutionary distant of about 520

million years from man [73], argues in favor of their

pathogenicity (Figure 4). Notably, these mutations were

not found in 402 to 666 control alleles from populations

of matched geographic origin. A substantial proportion

of USH patients thus carry a third, presumably patho-

genic mutation which, in some cases, may contribute to

worsen the sensory defects resulting from missense

mutations present in the “primary” USH gene.

Finally, no mutations were detected in five patients,

specifically three USH1 and two USH2 patients. In

patient S1823 (USH1), born from consanguineous par-

ents, involvement of any of the nine currently known

USH genes could be excluded by segregation analysis of

polymorphic markers at the corresponding loci (data

not shown). In the four remaining patients, the

Figure 3 Genetic evidence for presumably pathogenic mutations in more than one USH gene in six families. The index case in family

U24 is indicated by an arrow.
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undetected mutations might still be located in the unex-

plored promoter regions or intragenic regulatory

sequences of these genes, but may also be located in

other, still unknown USH genes, as in patient S1823.

Indeed, a new locus, USH1H, at chromosome 15q22-23

[74], and three candidate regions for new USH2 genes

(2q32, 4q26 and 15q22-23) have been reported [75].

Conclusion
Direct exon sequencing of a set of specific disease genes

is a reliable, easy set-up method, which remains less

expensive than full exome sequencing in the patients.

Based on the high prevalence of private mutations both

in USH1 and USH2 patients, the substantial number of

cases displaying genotype/phenotype discrepancy, and

the presence of additional, presumably pathogenic

mutations in a number of patients, we conclude that

exon sequencing (including flanking splice sites) of all

currently known USH genes is required for proper

molecular diagnosis in every USH patient, both in the

context of genetic counseling and in the perspective of

retinal and cochlear gene therapy. The activity of the

USH gene carrying biallelic mutations may indeed turn

out to be only partly restored by gene therapy, and the

presence of a third mutation in another USH gene may

then critically impact on the benefits of the gene ther-

apy. Moreover, as PDZD7 [76] has recently been

reported to modify the phenotype in patients carrying

mutations in USH2A or VLGR1 [77], future studies

should also take into account modifier genes in the

USH exome sequencing strategy.

Additional material

Additional file 1: Figure S1: Sequence alignment of amino acid

residues mutated in patients carrying missense mutations in USH1

genes. Representative stretches of amino acid sequences from each of

the USH1 proteins in various species were aligned. Identical residues are

highlighted with shading. Residues involved in missense mutations are

underlined. Figure S2: Sequence alignment of amino acid residues

mutated in patients carrying missense mutations in USH2 genes.

Representative stretches of amino acid sequences from each of the

USH2 proteins in various species were aligned. Identical residues are

highlighted with shading. Residues involved in missense mutations are

underlined. Orthologs of VLGR1 are not present in the genomes of

invertebrates such as C. elegans and drosophila. Figure S3: Missense

mutations possibly creating or disrupting a splice site.

Representative stretches of amino acid sequences from each of the USH

proteins in various species were aligned. Identical residues are

highlighted with shading. Residues involved in missense mutations are

underlined. Triangles indicate splice sites. Scores for splice sites are

obtained by NetGene2 software program. Possible new splice sites are in

bold. Figure S4: Segregation analysis of the USH2A mutations in

family U51.

Additional file 2: Table S1. Presumably neutral, isocoding and intronic

variants in USH genes.
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