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Abstract

Background: Genome sequences, now available for most pathogens, hold promise for the
rational design of new therapies. However, biological resources for genome-scale identification of
gene function (notably genes involved in pathogenesis) and/or genes essential for cell viability, which
are necessary to achieve this goal, are often sorely lacking. This holds true for Neisseria meningitidis,
one of the most feared human bacterial pathogens that causes meningitis and septicemia.

Results: By determining and manually annotating the complete genome sequence of a serogroup
C clinical isolate of N. meningitidis (strain 8013) and assembling a library of defined mutants in up to
60% of its non-essential genes, we have created NeMeSys, a biological resource for Neisseria
meningitidis systematic functional analysis. To further enhance the versatility of this toolbox, we
have manually (re)annotated eight publicly available Neisseria genome sequences and stored all
these data in a publicly accessible online database. The potential of NeMeSys for narrowing the gap
between sequence and function is illustrated in several ways, notably by performing a functional
genomics analysis of the biogenesis of type IV pili, one of the most widespread virulence factors in
bacteria, and by identifying through comparative genomics a complete biochemical pathway (for
sulfur metabolism) that may potentially be important for nasopharyngeal colonization.

Conclusions: By improving our capacity to understand gene function in an important human
pathogen, NeMeSys is expected to contribute to the ongoing efforts aimed at understanding a
prokaryotic cell comprehensively and eventually to the design of new therapies.
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Background

By revealing complete repertoires of genes, genome
sequences provide the key to a better and eventually global
understanding of the biology of living organisms. It is widely
accepted that this will have important consequences on
human health and economics by leading to the rational
design of novel therapies against pathogens infecting
humans, livestock or crops [1]. For example, identifying genes
essential for cell viability or pathogenesis would uncover tar-
gets for new antibiotics or drugs that selectively interfer with
virulence mechanisms of pathogenic species, respectively.
The major obstacle to this is the fact that hundreds of pre-
dicted coding sequences (CDSs) in every genome remain
uncharacterized. Unraveling gene function on such a large
scale requires suitable biological resources, which are lacking
in most species.

As shown in Saccharomyces cerevisiae, the model organism
for genomics, the most valuable toolbox for determining gene
function on a genome scale is likely to be a comprehensive
archived collection of mutants [2]. In bacteria, archived col-
lections of mutants containing mutations in most or all non-
essential genes have been constructed by systematic targeted
mutagenesis in model species (Escherichia coli and Bacillus
subtilis) and the genetically tractable soil species Acineto-
bacter baylyi [3-5]. Incidentally, this defined the genes nec-
essary to support cellular life (the minimal genome) as those
not amenable to mutagenesis. For a few other bacterial spe-
cies (Corynebacterium glutamicum, Francisella novicida,
Mycoplasma genitalium, Pseudomonas aeruginosa and Sta-
phylococcus aureus) transposon mutagenesis followed by
sequencing of the transposon insertion sites has been used to
generate large (but incomplete) archived libraries of mutants
[6-11]. However, multiple factors often hinder the effective-
ness of these toolboxes in contributing to large-scale
unraveling of gene function and/or the design of novel thera-
pies, including: slow growth and complex nutritional require-
ments (M. genitalium); the fact that many of these species do
not cause disease in humans (C. glutamicum, F. novicida);
the use of strains for which no accurate genome annotation is
available; and the frequent lack of publicly accessible online
databases for analysis and distribution of the mutants.

Neisseria meningitidis (the meningococcus) possesses sev-
eral features that make it a good candidate among human
pathogens for the creation of such a biological resource. The
meningococcus, which colonizes the nasopharyngeal mucosa
of more than 10% of mankind (usually asymptomatically),
grows on simple media with a rapid doubling time and has a
relatively compact genome of approximately 2.2 Mbp [12-15].
Furthermore, it is naturally competent throughout its growth
cycle and is therefore a workhorse for genetics. Yet, it is a
feared human pathogen because, upon entry in the blood-
stream, it causes meningitis and/or septicemia, which can be
fatal within hours [16]. Each year there are approximately 1.2
million cases of meningococcal infections worldwide, mostly
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in infants, children and adolescents, leading to an estimated
135,000 deaths [17].

Here we have exploited these meningococcal features to
design NeMeSys, a toolbox for N. meningitidis systematic
functional analysis. We opted for strain 8013 (serogroup C),
which was isolated at the Institut Pasteur in 1989 from the
blood of a 57-year-old male. This strain belongs to the ST-18
clonal complex, often associated with disease in countries
from Central and Eastern Europe. It was chosen primarily
because it is well-characterized (extensively used to study
adhesion to human cells and type IV pilus (Tfp) biology) and
has been previously used to produce an archived library of
approximately 4,500 transposon mutants [18]. We created
NeMeSys by sequencing the genome of strain 8013, the anno-
tation of which has been performed manually using Micro-
Scope, a powerful platform for microbial genome annotation
[19], and sequencing/mapping the transposon insertion sites
in 83% of the above mutants, which showed that 924 genes
were hit. Taking advantage of N. meningitidis natural compe-
tence for transformation, we designed a targeted in vitro
transposon mutagenesis approach useful for completing the
library in the future and validated it by constructing 26
mutants. The current library contains mutants in 947 genes of
strain 8013. All these datasets were stored in a publicly acces-
sible thematic database (NeisseriaScope) within MicroScope
[19]. Furthermore, to maximize the potential of NeMeSys for
functional analysis and foster its use in the Neisseria commu-
nity where multiple strains are used, we have manually
(re)annotated the following publicly available genome
sequences: four N. meningitidis clinical isolates from the dif-
ferent clonal complexes MC58 (ST-32, serogroup B), Z2491
(ST-4, serogroup A), FAM18 (ST-11, serogroup C) and
053442 (ST-4821, serogroup C) [12-15]; one unencapsulated
N. meningitidis carrier isolate (strain a14) [20]; one isolate of
the commensal N. lactamica (ST-640), which shares the
same ecological niche as N. meningitidis; and two clinical iso-
lates of the closely related human pathogen N. gonorrhoeae
(strains FA 1090 and NCCP11945), which colonizes a totally
different niche (the urogenital tract) [21]. As above, these
genomes have been stored in NeisseriaScope and are publicly
accessible. Finally, we present evidence obtained through
functional and comparative genomics illustrating how NeMe-
Sys can be used to narrow the gap between sequence and
function in the meningococcus.

Results and discussion

First component of NeMeSys: the genome sequence of
strain 8013

Providing a precise answer to the question of how many genes
are present in strain 8013's genome was a key primary task as
this is crucial information for the generation of a large collec-
tion of defined mutants. We therefore determined the com-
plete genome sequence of this clinical isolate belonging to a
clonal complex that is unrelated to the previously sequenced
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N. meningitidis strains [22]. Base-pair 1 of the chromosome
was assigned within the putative origin of replication [23].
Unsurprisingly, the new genome displays all the features typ-
ical of N. meningitidis (Table 1). It contains numerous repet-
itive elements - which have been extensively studied in other
sequenced strains [13,14] - the most abundant of which (1,915
copies) is the DNA uptake sequence essential for natural com-
petence. Although these repeats contribute to genome plas-
ticity, 8013's genome has maintained a high level of
colinearity with other N. meningitidis genomes. Synteny
between 8013's and other meningococcal genomes is either
conserved (with a14) or mainly disrupted by single, distinct,
symmetric chromosomal inversions (Additional data file 1).

To achieve an annotation as accurate as possible, we anno-
tated 8013's genome manually by taking advantage of all the
functionalities of the MicroScope platform [19]. This previ-
ously described annotation pipeline has three main compo-
nents: numerous embedded software tools and
bioinformatics methods for annotation; a web graphical
interface (MaGe) for data visualization and exploration; and
the large Prokaryotic Genome DataBase (PkDGB) for data
storage, which contains more than 400 microbial genomes.
We devoted particular care to identifying and duly labeling
gene remnants and silent cassettes because these do not
encode functional proteins and are, therefore, not targets for
mutagenesis. We identified 69 truncated genes (either in 5' or
3"), which we labeled with the prefix 'truncated'. For example,
the truncated rpoN encodes an inactive RNA polymerase
sigma-54 factor with no DNA-binding domain [24]. In addi-
tion, there are also three types of putative transcriptionally
silent cassettes (25 in total), which we named tpsS, mafS and
pilS. These cassettes have an important role in nature, gener-
ating antigenic variation upon recombination within the tpsA
and mafB multi-gene families, which encode surface-exposed
proteins (but this is yet to be demonstrated) or pilE, which
encodes the main subunit of Tfp [25,26]. Altogether, 8013's

Table |
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genome contains the information necessary to encode 1,967
proteins. Fifty-five of these proteins are encoded by out of
phase genes that we labeled with the suffix 'pseudogene’,
most of which (94.5%) are inactivated by a single frameshift
and are thus present as two consecutive CDSs. Since these
pseudogenes result from the slipping of the DNA polymerase
through iterative motifs [27], they are usually switched on
again during successive rounds of replication (a process
known as phase variation) and are, therefore, bona fide tar-
gets for mutagenesis. As is usual in MicroScope [19], 8013's
genome annotation has been stored within PkDGB in a the-
matic database named NeisseriaScope. To facilitate access to
this thematic database, we have designed a simple webpage
[28] with direct links to some of the most salient features in
MicroScope. Once in MicroScope, the user then has access to
a much larger array of exploratory tools [19].

The added value of this manual annotation is significant, as
illustrated, for example, by the following observation that was
previously overlooked. Strain 8013 is very likely to use type I
secretion (during which proteins are transported across both
membranes in a single step) to export polypeptides that could
play a role in pathogenesis. Together with a TolC-like protein
forming a channel in the outer membrane (NMV_0625),
8013's genome contains two complete copies of a polypeptide
secretion unit consisting of an inner-membrane protein from
the ATP-binding cassette ABC-type family, which has a dis-
tinctive amino-terminal proteolytic domain of the C39
cysteine peptidase family (NMV_o105/0106 and
NMV_1949), an adaptor or membrane fusion protein
(NMV_o0104 and NMV_1948), and several exported polypep-
tides with a conserved amino-terminal leader sequence fin-
ishing with GG or GA (known as the double-glycine motif)
that is processed by the inner-membrane peptidase (Figure
1a). Since double-glycine motifs are not readily identified by
bioinformatic methods, we screened the genome of 8013
manually and discovered five candidate genes containing

General features of N. meningitidis based on six (re)annotated genome sequences

N. meningitidis strain

Genome feature 8013 Z2491 MC58 FAMIS8 053442 al4

Size (bp) 2,277,550 2,184,406 2,272,360 2,194,961 2,153,416 2,145,295
G+C content (%) 51.4 51.8 51.5 51.6 51.7 51.9
Coding density (%) 76 76.9 76.5 772 76.5 783
Genes 1,912 1,878 1,914 1,872 1,817 1,809
Pseudogenes 55 63 69 55 57 59
Truncated genes 69 48 48 56 68 51
Silent cassettes 25 15 24 17 13 10
Strain-specific genes 38 41 37 10 18 44
tRNA 59 58 59 59 59 58
rRNA operons 4 4 4 4 4 4
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(a) (b)

Gene name

NMV_0099 - - - - - - MKENHT SE@Y E

NMV_1926 LKRKNN| | [ANS[EDMEL] Y Feature NMV_0099 NMV_1926 NMV_1950 NMV_2005 NMV_2009

NMV_1950 - - - - - - NEL o)

NMV_Zg(S)g ______ VEL S V[E) Et A Signal peptlde (aa) 15 21 15 15 15

NMV_2009 - - - - - - EL N )L ¢ molecular weight (Da)* 6,716 5,883 9,929 8,666 9,572
pKi* 11.10 417 5.14 4.59 4.27
Gly (%)* 17.5 30.3 15.5 35.1 19.6
*Features of the mature peptides, upon cleavage after the double GG moitif.

putative cleavage site

Figure |

N. meningitidis strain 8013 has putative type | secretion units for the export of polypeptides that may play a role in colonization or
virulence by acting, respectively, as bacteriocins or pheromones. (a) Alignment of the double-glycine motifs in the putative bacteriocin/
pheromones found in strain 8013. Amino acids are shaded in purple (identical) or in light blue (conserved) when present in at least 80% of the aligned
sequences. (b) General features of the putative bacteriocin/pheromones. aa, amino acids.

such leader sequences (Figure 1a). The putative mature
polypeptides are small, rich in glycine and either very basic or
acidic (Figure 1b). Although FAM18 and MC58 strains also
contain one complete copy of this secretion unit (while only
remnants are found in Z2491 and 053442), this biological
information could not be easily extracted from the corre-
sponding genome annotations, in which these genes were
predicted to encode proteins of unknown function or to be
putative protein export/secretion proteins, at best. What
could be the role of these polypeptides, if any, in meningococ-
cal pathogenesis? Although it is more likely that they are bac-
teriocins [29] with a role in nasopharyngeal colonization
through inhibition of the growth of other bacteria competing
for the same ecological niche, there is another intriguing pos-
sibility. As reported in Gram-positive bacteria, these polypep-
tides could be pheromones used for quorum sensing and cell-
to-cell communication [29]. This possibility is appealing
because meningococci are not known to produce other quo-
rum-sensing molecules that could allow them to regulate
their own expression profiles in response to changes in bacte-
rial density.

Second component of NeMeSys: a growing collection
of defined mutants in strain 8013

We have previously reported the assembly of an archived
library of 4,548 transposition mutants in strain 8013 and the
design of a method for high-throughput characterization of
transposon insertion sites based on ligation-mediated PCR
[18]. Here, we extended this systematic sequencing program
to all the mutants in the library and obtained 3,964 sequences
of good quality (Table 2). After eliminating 22 sequences for
which various anomalies were detected, we kept only one
sequence for each mutant (sometimes both sides of the
inserted transposon were sequenced); we thus identified the
transposon insertion sites in 3,780 mutants (83.1% of the
library). Strain 8013's genome sequence made it possible to
precisely map 3,625 of these insertions to 3,191 different sites
(the remaining 155 being in repeats). This showed that trans-
position occurred randomly as insertions were scattered
around the genome (Figure 2), every 700 bp on average, and

no conserved sequence motifs could be detected apart from
the known preference for transposition into TA dinucleotides.
Strikingly, only 63.4% of the mapped insertions were in
genes, which is substantially lower than the 76% coding den-
sity of the genome. This bias is likely to be due, at least in part,
to the fact that insertions that occurred in essential genes dur-
ing in vitro transposon mutagenesis were counter-selected
upon transformation in N. meningitidis (see below). Analysis
of the insertions within genes shows that a total of 924 genes
were hit between 1 and 14 times (Additional data file 2). As
expected, larger genes tended to have statistically more hits
(Table 3). For example, 86% (24 out of 28) of the genes longer
than 3 kbp were hit 5.7 times on average, 62% (58 out of 94)
of the genes between 2 and 3 kbp long were hit 3.7 times on
average, while only 21% (14 out of 66) of the genes shorter
than 200 bp were hit. As above, these data have been stored
in NeisseriaScope. Determining whether a gene has been dis-

Table 2

General features of the collection of defined mutants in strain
8013

Feature N

Random mutagenesis

Mutants arrayed 4,548
Transposon insertion sites sequenced 3,802
High-quality sequences 3,780
Insertion sites mapped 3,625
Insertions in genes 2,299
Insertions between genes 1,326
Genes hit 924
Targeted mutagenesis
Genes targeted 28
Genes mutated 26
Number of genes mutated (total) 947

Genome Biology 2009, 10:R110
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Statistical distribution of transposon insertions within genes

Gene size (bp) Number of genes % genes hit

Number of hits

Average hits % genes missed % missed genes in DEG

>3,000 28 85.7 137
2,000-3,000 94 61.7 213
1,000-2,000 557 58.9 954
500-1,000 688 49.5 660
<500 600 327 367

5.7 14.3 75

37 383 77.8
29 41.1 46.7
1.9 50.5 41.9
1.9 67.3 314

DEG: Database of Essential Genes.

rupted, how many times, and in which position(s) and
requesting the corresponding mutant(s) can therefore easily
be done online.

Although the number of essential genes in bacteria vary in dif-
ferent species [30], a likely estimate of 350 genes being essen-
tial for growth in N. meningitidis suggests that the library
contains mutants with insertions in 57.1% of the remaining
1,617 genes that might be amenable to mutagenesis. Although
an increase in saturation could be achieved by assembling a
much larger library of mutants, this would come at a high cost
- that is, a substantial increase in both mutant redundancy
and insertions in intergenic regions. We therefore took
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Figure 2

Distribution on the N. meningitidis strain 8013 genome of 3,655
transposon insertions in an archived collection of mutants. The
concentric circles show (reading inwards): insertions in genes (green);
genes transcribed in the clockwise direction (red); genes transcribed in the
counterclockwise direction (blue); and insertions in intergenic regions
(black). Distances are in kbp.

advantage of 8013's natural competence and strong tendency
towards homology-directed recombination to design an alter-
native targeted mutagenesis strategy, robust enough to be
used to complete the library (Table 2). We modified our orig-
inal mutagenesis method in which genes are amplified,
cloned, submitted to in vitro transposition and directly trans-
formed in N. meningitidis [31] because although it could be
used in strain 8013 (we generated mutants in six genes
involved in Tfp biology), its efficiency was too variable for
high-throughput use. The rationale of the new method was to
positively select mutagenized target plasmids in E. coli before
transforming them into the meningococcus. We therefore
subcloned the mini-transposon into a plasmid with a R6K ori-
gin of replication that requires the product of the pir gene for
stable maintenance [32]. This allows positive selection of tar-
get plasmids with an inserted transposon in target genes after
transformation of the in vitro transposition reactions in an E.
coli strain lacking pir (see Materials and methods). As ini-
tially shown with comP and NMV_o0901 (genes with sus-
pected roles in Tfp biology; see below), plasmids suitable for
N. meningitidis mutagenesis could be readily selected. This
method was further validated by constructing 18 mutants in
missed genes encoding two-component systems and helix-
turn-helix-type transcriptional regulators. Interestingly,
although we obtained plasmids suitable for mutagenesis, we
could not disrupt fur, which encodes a ferric uptake helix-
turn-helix-type regulator, and NMV_ 1818, which encodes the
transcriptional regulator of a two-component system (Table
2). At this stage, we have at our disposal a library of mutants
in 947 genes of strain 8013 (approximately 60% of the genes
that might be amenable to mutagenesis; Table 2), including
almost all those involved in Tfp biology and transcriptional
regulation, and a robust mutagenesis method for completing
it in the future.

Functional genomics: NeMeSys facilitates
identification of gene function and genes essential for
viability

The main aim of NeMeSys is to facilitate identification of gene
function, notably the discovery of genes essential for menin-
gococcal pathogenesis and/or viability. The potential of
NeMeSys for discovery of genes essential for pathogenesis has
already been confirmed by the results of several screens per-
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formed at earlier stages of the construction of this resource.
These studies improved our understanding of properties key
for meningococcal virulence, such as resistance to comple-
ment-mediated lysis [18], adhesion to human cells [33] or Tfp
biogenesis [34]. For example, we previously showed that 15
genes are necessary for Tfp biogenesis (pilC1 or pilC2, pilD,
pilE, pilF, pilG, pilH, pill, pilJ, pilK, pilM, pilN, pilO, pilP,
pilQ and pilW) as the corresponding mutants are non-piliated
[34]. To further strengthen this point, we decided to revisit,
using the current version of NeMeSys, our findings on Tfp
biogenesis that made N. meningitidis strain 8013 a model for
the study of this widespread colonization factor [35]. Firstly,
we noticed that the original screen was extremely efficient
because approximately 96% of the mutants in these genes
that are present in the library (47 out of 49) were indeed iden-
tified. Secondly, mining of 8013's genome uncovered 8 addi-
tional genes for which their sequence (pilT2) and/or previous
reports (comP, pilT, pilU, pilV, pilX, pilZ and NMV_0901)
suggest that they could play a role in Tfp biology. Although
most of these genes have been studied in other piliated spe-
cies, their role in piliation is not always clear as conflicting
phenotypes have been assigned to some of the corresponding
mutants [35]. Therefore, after constructing the correspond-
ing mutants (50% of these genes were not mutated in the orig-
inal library), we used immunofluorescence microscopy to
visualize Tfp. This demonstrated that none of these genes is
necessary for Tfp biogenesis in N. meningitidis. Importantly,
mutants in NMV_0901 are unambiguously piliated (Figure 3)
despite its annotation as a putative fimbrial assembly protein
in every bacterial genome where it is present, including the
previously published N. meningitidis genomes. Strikingly,
this annotation was inferred only from sequence homology
with FimB from Dichelobacter nodosus, which was once
hypothesized to be involved in Tfp biogenesis [36], a possibil-
ity that was later invalidated [37]. Our results confirm that the
annotation of this CDS should, therefore, be updated in the
databanks and in future genome projects.

Essential genes are defined as those not amenable to muta-
genesis. During targeted mutagenesis, the absence of trans-
formants with plasmids generated by the above method is

Figure 3

NMV_0901 is not involved in Tfp biogenesis. Presence or absence of
Tfp in various genetic backgrounds as monitored by immunofluorescence
microscopy. Fibers were stained with a pilin-specific monoclonal antibody
(green) and the bacteria were stained with ethidium bromide (red).
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strong evidence that the corresponding genes are essential
since transformation of strain 8013 with plasmids is usually
very efficient (up to 1,000 transformants per microgram of
DNA). For example, although we obtained plasmids suitable
for mutagenesis, we could not obtain mutants in fur and
NMV_ 1818, which suggests that these genes are essential, at
least in strain 8013. Furthermore, genes without transposon
insertions that are almost certainly essential could readily be
highlighted by a statistic analysis. For example, we found that
non-repeated genomic regions devoid of transposons that are
significantly larger than the average distance between inser-
tions (700 bp) predominantly contain genes listed in the
Database of Essential Genes (DEG) [30]. DEG, which lists
bacterial genes essential for viability in different species, has
therefore been integrated into MicroScope to facilitate this
analysis. This is best illustrated by the largest such region
(Figure 2), which starts at 130,211, is 36.6 kbp long, and con-
tains 47 genes but not a single tranposon insertion. At least 44
of these genes are almost certainly essential according to
DEG, such as the 32 genes that encode protein components of
the ribosome. Similarly, this holds true for most of the large
genes that were missed (Table 3). Of the four genes longer
than 3 kbp that were missed, three are almost certainly essen-
tial (rpoC, rpoB and dnakE) as they are involved in basic RNA
and DNA metabolism. Of the 36 genes between 2 and 3 kbp
long that were missed, approximately 80% are almost cer-
tainly essential, such as those encoding 7 tRNA-synthetases
or proteins involved in DNA metabolism (dnaZ/X, ligA,
gyrA, gyrB, nrdA, parC, pnp, priA, rne, topA and uvrD).
Interestingly, not all genes listed in DEG are essential in the
meningococcus, as we found insertions in ftsE and ftsX
(involved in cell division), which are essential in E. coli, or fba
(fructose-bisphosphate aldolase), which is essential in P. aer-
uginosa. This points to interesting differences between N.
meningitidis and these species.

Third component of NeMeSys: eight additional
(re)annotated Neisseria genomes

To facilitate and foster the use of NeMeSys in the Neisseria
community where multiple strains are used, we have included
in NeisseriaScope all the publicly available complete Neisse-
ria genomes (five N. meningitidis, two N. gonorrhoeae and
one N. lactamica). However, we noticed that the annotations
(N. lactamica is not annotated yet) were heterogeneous,
which probably results from the use of different CDS predic-
tion software and/or different annotation criteria. We have
therefore (re)annotated each genome in MicroScope. In brief,
we first transferred 8013's gene annotation to the clear
orthologs in these genomes (CDSs identified by BLASTP as
encoding proteins with at least 90% amino acid identity over
at least 80% of their length). We then manually edited the
annotation of the remaining CDSs in Z2491 using the criteria
set for strain 8013 and transferred this annotation to the
remaining genomes using the same cutoff. This was then
done iteratively in the order MC58, FAM18, 053442, N.
lactamica, FA 1090, NCCP11945 and o14. An additional
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approximately 4,000 CDSs have thus been manually curated,
bringing the grand total to approximately 6,400 (Table 4). As
above, all these datasets are stored in NeisseriaScope and are
readily accessible online. During this process, we deleted as
many as 1,238 previously predicted CDSs (43% of which are
in NCCP11945 only), mostly (85%) because they were not
identified as CDSs by MicroScope (Table 4). The possibility
that most of these CDSs were actually prediction errors is
strengthened by two facts. Firstly, despite the corresponding
genomic regions being often conserved in all genomes, as
revealed by BLASTN, these CDSs were originally predicted in
only one or two genomes. Secondly, they were occasionally
replaced in other genomes by overlapping correct CDSs on
the opposite strand. Among the many such examples are
NMBo0936 in MC58 (wrong) replaced by NMA1131 and
NMA1132 in Z2491 (correct), and NMCC_1055 in 053442
(wrong) replaced by NMC1074 in FAM18 (correct). In paral-
lel, we added 912 new CDSs (Table 4). For example, clearly
missing in the original annotations were genes as important
as tatA/E in FAM18, which encodes the TatA/E component of
the Sec-independent protein translocase, ccoQ in MCs8,
which encodes one of the components of cytochrome ¢ oxi-
dase, and as many as eight genes encoding ribosomal proteins
in NCCP11945. By improving homogeneity of the Neisseria
genome annotations, this massive effort is expected to have
an impact on future studies aimed at narrowing the gap
between sequence and function in these species.

Comparative genomics: NeMeSys facilitates whole-
genome comparisons

Whole-genome comparisons, in silico or using microarrays,
have been widely used to gain novel insight into the biology of
Neisseria species [22,38-41]. The availability of nine homo-
geneously (re)annotated Neisseria genomes is expected to
facilitate comparative genomics, notably by preventing some
erroneously predicted CDSs from appearing as strain-specific
and by increasing the number of genes common to all strains.
A basic analysis of N. meningitidis strains revealed extremely
conserved features (Table 1) and provided the identikit of a
typical meningococcus. The theoretical average meningococ-
cal genome is 2.2 Mbp long and contains the information nec-
essary to encode 1,927 proteins (truncated genes and silent
cassettes are excluded from this count). Each strain contains,
on average, 31 genes showing no homology to genes present

Table 4

Gen

ome Biology 2009, Volume 10, Issue 10, Article RI 10

in the other genomes (Table 1), confirming recent predictions
[38] that the pan-genome of N. meningitidis (the entire gene
repertoire accessible to this species [42]) is open and large. A
comparison of N. meningitidis clinical isolates (all strains
except a14) shows that as many as 1,736 genes (approxi-
mately 90%) are shared (Additional data file 3) since they
encode proteins displaying at least 30% amino acid identity
over at least 80% of their length and are, in addition, in syn-
teny and/or are bidirectional best BLASTP hits (BBHs).
Importantly, this number is only slightly decreased when
changing the cutoff to a very stringent 80% amino acid iden-
tity (data not shown). This shows that despite its fundamen-
tally non-clonal population structure, N. meningitidis is more
homogeneous than predicted using previous annotations
[22]. Nevertheless, the potential for diversity is important
and results from the presence of approximately 200 non-core
genes (approximately 10% of the gene content). In each
genome, many of these non-core genes cluster together in
approximately 20 genomic islands (GIs), most of which are
likely to have been acquired by horizontal transfer (Figure
4a). These GIs, many of which were previously identified in
other genomes as prophages, composite transposons or so-
called minimal mobile elements [22,43,44], contain maf and
tps genes, genes involved in the biosynthesis of the capsule or
the secretion of bacteriocin/pheromones, and genes encoding
FrpA/C proteins or type I, II and III restriction systems
(Additional data file 4). Interestingly, identification of novel
combinations of non-core genes flanked by core genes - for
example, those defining GI19 and GI20 (Figure 4b) - provide
further evidence for the minimal mobile element model in
which these units promote diversity through horizontal gene
transfer and chromosomal insertion by homologous recombi-
nation [44]. In conclusion, the fact that approximately 90% of
meningococcal genes are conserved in clinical isolates is a
clear advantage for NeMeSys as it indicates that a complete
library of mutants in strain 8013 could be used to define the
functions of most genes in any N. meningitidis strain.

Examination of the core genome confirms well-known facts
[12-15], such as that N. meningitidis has a robust metabolism
(complete sets of enzymes for glycolysis, the tricarboxylic acid
cycle, gluconeogenesis and both pentose-phosphate and
Entner-Doudoroff pathways) and may be capable of de novo
synthesis of all 20 amino acids. Inspection of the non-core

Summary of the (re)annotation effort of eight Neisseria genomes

Strain

Genome feature Z2491 MC58 FAMI8 053442 N. lactamica* FA 1090 NCCPI1945 «0ol4
Manually edited CDSs 466 421 315 574 549 643 691 314
CDSs deleted from previous annotation 103 164 39 138 173 538 83
New CDSs 38 93 9l 100 362 150 78

*The N. lactamica genome was not previously annotated.
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Genomic islands

Strain

(b)

. present (identical) . present (variable) |:| absent

hrpA MME
hrpA”  NMV_2207 hrpA’
8013 — % >
NMV_2208
hrpA’ hrpA’
72491
NMA0431 NMA0432
hrpA’ hrpA’
MC58 >
NMB2008 NMB2010
gpm-alaS MME
gpm NMV_0782 alas
8013
tehA NMV_0783/0784
gpm NMA1799 NMA1796 NMA1791 alas
72491 #_ '
piv NMA1797 NMA1792 NMA1789
piv prophage (Gl21)
Figure 4

Most non-core meningococcal genes are clustered in approximately 20 genomic islands (Gls) in a limited number of genomic regions.
(@) Presence and distribution of Gls possibly acquired by horizontal transfer (see Additional data file 4 for a detailed list of genes in the Gls). (b) Novel
genomic context of some minimal mobile elements (MME), regions of high plasticity occupied by different Gls in different strains. Genes of the same color

encode orthologous proteins. All the genes are drawn to scale.

genome outlines differences between clinical isolates that
might modulate their virulence, such as a truncated pilE gene
in 053442, which suggests that this strain is non-piliated and
has impaired adhesive abilities, or the presence of the hemo-
globin-haptoglobin utilization system HpuA/B [45], which
might improve the ability of FAM18 and Z2491 to scavenge
iron in the host. However, to illustrate NeMeSys's utility for
comparative genomics, rather than trying to identify genes
important for meningococcal pathogenesis, which is elusive
since several studies have shown that putative virulence
genes are found in both clinical isolates and non-pathogenic
strains or species such as N. meningitidis a14 and N. lactam-
ica [38,40,41], we looked for 'fitness' genes that might be
important for nasopharyngeal colonization. To do this we
identified the genes shared by all N. meningitidis and N.
lactamica strains (encoding proteins displaying at least 50%

amino acid identity over at least 80% of their length and are,
in addition, in synteny and/or BBHs) and absent in the two
gonococci (which colonize the urogenital tract). This led to an
intriguing novel finding. Out of the only nine genes present in
the seven nasopharynx colonizers but missing in the two gen-
ital tract colonizers (Table 5), three (cysD, cysH and cysN)
encode proteins that are part of a well-characterized meta-
bolic pathway. In N. gonorrhoeae, an in-frame 3.4 kbp dele-
tion has occurred between cysG and cysN, leading to a gene
encoding a composite protein of which the amino-terminal
half corresponds to the amino-terminal approximately 34%
of CysG and the carboxy-terminal half corresponds to the car-
boxy-terminal approximately 45% of CysG (Figure 5a). In N.
meningitidis and N. lactamica, the five proteins encoded by
cysD, cysH, cysl, cysJ and cysN are expected to give these
species the ability to reduce sulfate into hydrogen sulfide
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Genes shared by six N. meningitidis strains and N. lactamica that are absent in two N. gonorrhoeae strains, some of which may play a role

in nasopharyngeal colonization

Label Gene Product

NMV_Ii014 Conserved hypothetical protein

NMV_I017 Hypothetical protein

NMV_I172/1173 Putative glycosyl transferase (pseudogene)
NMV_1233 cysG Siroheme synthase

NMV_1234 cysH Adenosine phosphosulfate reductase (APS reductase)
NMV_[235 cysD Sulfate adenylyltransferase small subunit

NMV_1236 cysN Sulfate adenylyltransferase large subunit

NMV_2185 Conserved hypothetical integral membrane protein
NMV_2186 Hypothetical membrane-associated protein

These genes, which are in synteny and/or are BBHs, encode proteins displaying at least 50% amino acid identity over at least 80% of their length.

(Figure 5b). First, CysD and CysN might transform sulfate
into adenosine 5'-phosphosulfate (APS). Usually, APS is
phosphorylated into phosphoadenosine-5'-phosphosulfate
(PAPS), which is then reduced into sulfite by a PAPS reduct-
ase, but there is no gene encoding the necessary enzyme (APS
kinase). This might have led to the conclusion that the path-
way is incomplete. However, unlike what has been predicted
in previous annotations, the product of cysH is likely to be a
PAPS reductase rather than an APS reductase since it is most
closely related to genes encoding APS reductases in alphapro-
teobacteria such as Sinorhizobium meliloti and Agrobacte-
rium tumefaciens and plants such as Arabidopsis thaliana
[46]. Therefore, in N. meningitidis and N. lactamica sulfate

reduction differs slightly from the classical pathway since
APS might be directly reduced into sulfite by CysH (Figure
5b). The possibility that sulfur metabolism might be critical
for meningococcal survival in the host, which remains to be
experimentally tested, is not unprecedented in bacterial path-
ogens, as shown in Mycobacterium tuberculosis [47].

Conclusions

We have designed a biological resource for large-scale func-
tional studies in N. meningitidis that, as illustrated here, has
the potential to rapidly improve our global understanding of
this human pathogen by promoting and facilitating func-

(a)
NMV_1232 ilvD
N. meningitidis
cysG  cysH cysD cysN cysJ cysl
NGO0805 ivD
N. gonorrhoeae H I I >| >
cysGN cysd cysl
(b)
CysD+CysN CysH Cysl+CysJ
sulfate ~—» APS —_—> sulfite —>» hydrogen sulfide
sulfate APS reductase sulfite reductase
adenylyltransferase

Figure 5

Neisseria species colonizing the human nasopharynx (N. meningitidis and N. lactamica), but not N. gonorrhoeae, which colonizes the
genital tract, have a complete metabolic pathway potentially involved in sulfate reduction. (a) Genomic context of the genes likely to be
involved in sulfate reduction in N. meningitidis (identical in N. lactamica) and in N. gonorrhoeae. Genes of the same color encode orthologous proteins. cys/
and cys/ in the gonococcus are pseudogenes and the frameshifts are represented by horizontal lines within the CDS. All the genes are drawn to scale. (b)
Predicted biochemical pathway for sulfate reduction in N. meningitidis. APS: adenosine 5'-phosphosulfate.
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tional and comparative genomics studies. NeMeSys is viewed
as an evolving resource that will be improved, for example,
through completion of the collection of mutants (either
through gene-by-gene or systematic targeted mutagenesis of
the missed genes), further improvement of the accuracy of the
annotation by taking into account any new experimental evi-
dence, improvement of the website design and content, and
addition of new Neisseria genomes as they become available.
There is no doubt that NeMeSys would requite these efforts
(thereby justifying its name, which was inspired by an ancient
Greek goddess seen as the spirit of divine retribution) by fur-
ther improving our capacity to understand gene function in
N. meningitidis. Ideally, such studies could contribute to the
ongoing efforts aimed at comprehensively understanding a
prokaryotic cell and help in the design of new therapies.

Materials and methods

Bacterial strains and growth conditions

The sequenced strain (also known as clone 12 or 2C43) is a
naturally occurring pilin antigenic variant of the original clin-
ical isolate N. meningitidis 8013, which expresses a pilin
mediating better adherence to human cells [48]. Meningo-
cocci were grown at 37°C in a moist atmosphere containing
5% CO, on GCB agar plates containing Kellog's supplements
and, when required, 100 pg/ml kanamycin. E. coli TOP10
(Invitrogen, Paisley, Renfrewshire, UK), DH5a or DH5a Apir
were grown at 37°C in liquid or solid Luria-Bertani medium
(Difco, Oxford, Oxfordshire, UK), which contained 100 pg/ml
ampicillin, 100 pg/ml spectinomycin and/or 50 pg/ml kan-
amycin, when appropriate.

Genome sequencing

The complete genome sequence of strain 8013
[EMBL:FMqq9788] was determined by a whole genome
shotgun using a library of small inserts in pcDNA 2.1 (Invitro-
gen). We obtained and assembled 32,338 sequences using
dye-terminator chemistry, which gave an approximately
nine-fold coverage of the genome. End sequencing of large
inserts in a pBeloBAC11 library aided in assembly verification
and scaffolding of contigs.

Genome (re)annotations

Strain 8013's genome was annotated using the previously
described MicroScope annotation pipeline [19], which has
embedded software for syntactic analysis and more than 20
well-known bioinformatics methods (InterProScan, COGni-
tor, PRIAM, tmHMM, SignalP, and so on). In brief, potential
CDSs were first predicted by the AMIGene software [49]
using three specific gene models identified by codon usage
analysis, tRNA were identified using tRNAscan-SE [50],
rRNA using RNAmmer [51] and other RNA by scanning the
Rfam database [52]. CDSs were assigned a unique NMV_
identifier and were submitted to automatic functional anno-
tation in MicroScope [19]. Functional annotation, syntactic
homogeneity and start codon position of each CDS present in
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the genome were then refined manually during three rounds
of inspection of the results obtained using the above bioinfor-
matics methods. This led to four major classes: CDSs encod-
ing proteins of known function (high homology to proteins of
defined function), for which the SwissProt annotation was
most often used; CDSs encoding proteins of putative function
(conserved protein motif/structural features or limited
homology to proteins of defined function), which were
labeled with the prefix 'putative'; and CDSs encoding proteins
of unknown function defined either as 'conserved hypotheti-
cal protein' (significant homology to proteins of unkown func-
tion outside of Neisseria species) or 'hypothetical protein' (no
significant homology outside of Neisseria species). However,
adjectives were added when localization of the corresponding
proteins could be predicted through tmHMM [53] or SignalP
[54] (for example, 'hypothetical periplasmic protein' or 'con-
served hypothetical integral membrane protein') or protein
motifs not allowing functional predictions were identified
through InterProScan [55] (for example, 'conserved hypo-
thetical TPR-containing protein'). Importantly, during the
manual curation of CDSs encoding proteins of unknown func-
tion, the dubious ones (typically those with less than 50%
coding probability, shorter than 150 bp, overlapping with
highly probable CDSs or RNA on the opposite strand, and so
on) were deleted. During this process, self-explanatory com-
ments mostly based on InterProScan entries and links to rel-
evant literature in PubMed (139 in total) were entered
manually in the database.

To define truncated genes, for which only partial homologies
could be detected, or out of phase genes, for which homology
was complete but involved at least two consecutive CDSs, we
used BLASTP and coding probability results. The corre-
sponding open reading frames were trimmed to their biolog-
ically significant portions (both on 5' and 3") and labeled with
the prefix 'truncated' or the suffix '‘pseudogene’, respectively.
During this process, putative frameshifts or sequencing
errors in 42 CDSs were amplified and resequenced.

All Neisseria genomes available in GenBank (MC58, Z2491,
FAM18, 053442, a14, FA 1090 and NCCP11945) or at the
Sanger Institute (N. lactamica) were (re)annotated in Micro-
Scope using the same approach as above. AMIGene was used
to predict the CDSs, labeling the new ones with a distinct
identifier (for example, NEIMA instead of NMA in Z2491),
which were submitted to automatic functional annotation in
MicroScope. The functional annotation in N. meningitidis
strain 8013 was then automatically transferred to all clear
orthologs, stringently defined as genes endoding proteins
showing at least 90% BLASTP identity over at least 80% of
their length. All the remaining CDSs were then annotated
manually using the same procedure as for strain 8013, start-
ing with Z2491 and transferring this new annotation to the
remaining genomes using the same cutoff. This was then
done iteratively in the order MC58, FAM18, 053442, N.
lactamica, FA 1090, NCCP11945 and a14. Importantly, previ-
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ously predicted CDSs that were not recognized as such by
AMIGene were deleted during the process.

Genomic analyses

All the genomic analyses were performed within MicroScope
using embedded software. Whole-genome comparisons of
gene content (using the mentioned cutoffs) were done using
the PhyloProfile Synteny functionality [19], which combines
BLASTP, BBH and/or synteny results. Graphical representa-
tion of whole-genome syntenies were generated using
LinePlot functionality [19]. Graphical circular representation
of the strain 8013 genome with transposon insertions was
generated using the CGView software [56]. Characterization
of the sulfate reduction pathway in Neisseria strains coloniz-
ing the nasopharynx was done using metabolic pathway pre-
dictions built with the Pathway Tools software [57]. GIs of
putative horizontally transferred genes were identified in
each N. meningitidis clinical isolate using the Genomic Island
functionality tool [19]. This tool combines detection of syn-
teny break points in the query genome in comparison with
closely related genomes, searches for mobility genes, tRNA
and direct repeats (if any) at the borders of the synteny break
points and finally searches for compositional bias in the query
genome.

Genome-wide collection of defined mutants

The construction of an archived library of undefined transpo-
son mutants in strain 8013 and the design/validation of a
method for large-scale characterization of transposon inser-
tion sites based on ligation-mediated PCR have been
described [18]. Each mutant is assigned a unique x/y identi-
fier, where x indicates the half microtitre plate and y the posi-
tion of the mutant. Genomic DNA for each mutant, prepared
using the Wizard Genomic DNA Purification kit (Promega,
Southampton, Hampshire, UK), was used to try to amplify
sequences flanking the inserted transposons mainly by liga-
tion-mediated PCR (other techniques have been tested as
well). Amplified fragments were sequenced with outward-
reading primers ISL or ISR internal to the transposon [18].
Sequences were trimmed to eliminate regions of poor quality
or corresponding to the transposon and subsequently
mapped on 8013's genome using BLASTN.

Additional mutants were engineered by in vitro transposon
mutagenesis on PCR products cloned into pCRII-TOPO or
PCR8/GW/TOPO vectors (both from Invitrogen). Initially,
mutants in six genes involved in Tfp biology (pilM, pilN, pilO,
pilT, pilU and pilZ), four of which have been described previ-
ously [58], were constructed by directly transforming trans-
position reactions into strain 8013. We used as a donor the
pSM1 vector in which the transposon is cloned within a plas-
mid with a ColE1 origin of replication [31]. However, the effi-
ciency was low, with only zero to two mutants per
transposition reaction. Subsequently, we modified this
method for high-throughput use by subcloning the mini-
transposon into plasmid pGP704, which has a R6K origin of
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replication. The mini-transposon, extracted from pSM1 on a
Xbal-EcoRI fragment, was cloned into Xbal-EcoRI-cut plas-
mid pGP704 [32]. The resulting plasmid pYU29 can replicate
only in the presence of Pir, which is found in E. coli strains
such as DH5a Apir. Therefore, upon transformation of an
aliquot of the in vitro transposition reaction in DH5a and
selection on plates containing kanamycin (cassette in the
mini-transposon) and spectinomycin (cassette in the target
vector), target plasmids with an inserted mini-transposon can
be positively selected. As seen initially with the comP and
NMV_0901 genes, hundreds of Spr, Km! transformants could
easily be obtained while no transformants were obtained
when no transposase was added in the transposition reaction
(data not shown). Restriction analysis of recombinant plas-
mids confirmed that they contained an inserted transposon
(data not shown). Transformants containing plasmids suita-
ble for N. meningitidis mutagenesis - that is, with an insertion
approximately in the middle of the target gene - were readily
identified by colony-PCR by using a mix of ISL and ISR, and
the forward primer used to amplify the target gene. Plasmids
were then extracted, used to sequence the site of transposon
insertion with ISL or ISR, and transformed in N. meningi-
tidis. This method was validated by constructing mutants in
20 genes (NMV_o0125, NMV_0126, NMV_0323, NMV_0419,
NMV_o0433, mtrR, NMV_0658, NMV_o0757, NMV_0773,
NMV_o0774, NMV_o9o1, hexR, 1iscR, NMV_1093,
NMV_1134,NMV_1850, NMV_2068, NMV_ 2160, comP and
NMV_2258).

Tfp detection

Tfps were detected by immunofluorescence microscopy using
the 20D9 monoclonal antibody, which is specific for the pilin
in strain 8013 as described elsewhere [34]. This was done
using a Nikon Eclipse E600 microscope and digital images
were recorded with a Nikon DXMi200 digital camera
mounted onto the microscope.

Data sharing

Asusual in MicroScope [19], all the datasets generated during
this study have been stored within PkDGB in a thematic sub-
database named NeisseriaScope, which is publicly accessible
through MaGe. The MaGe web interface can be used to visu-
alize genomes (simultaneously with synteny maps in other
microbial genomes, one of its main features), perform queries
(by BLAST or keyword searches) and download all datasets in
a variety of formats (including EMBL and GenBank). How-
ever, to facilitate access to the genome (re)annotations and
distribution of mutants to the scientific community, we have
designed a straightforward webpage [28] providing direct
links to some of the most salient features in MicroScope. If
needed, once in NeisseriaScope, the user has unlimited access
to the whole array of exploratory tools within the MicroScope
platform. Eventually, upon completion, the library of mutants
will be made entirely and freely available. In the meantime,
up to ten mutants can be requested simultaneously.
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