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Assembly and proteolytic processing of
mycobacterial ClpP1 and ClpP2
Nadia Benaroudj1*, Bertrand Raynal2, Marika Miot3 and Miguel Ortiz-Lombardia4

Abstract

Background: Caseinolytic proteases (ClpPs) are barrel-shaped self-compartmentalized peptidases involved in

eliminating damaged or short-lived regulatory proteins. The Mycobacterium tuberculosis (MTB) genome contains

two genes coding for putative ClpPs, ClpP1 and ClpP2 respectively, that are likely to play a role in the virulence of

the bacterium.

Results: We report the first biochemical characterization of ClpP1 and ClpP2 peptidases from MTB. Both proteins

were produced and purified in Escherichia coli. Use of fluorogenic model peptides of diverse specificities failed to

show peptidase activity with recombinant mycobacterial ClpP1 or ClpP2. However, we found that ClpP1 had a

proteolytic activity responsible for its own cleavage after the Arg8 residue and cleavage of ClpP2 after the Ala12

residue. In addition, we showed that the absence of any peptidase activity toward model peptides was not due to

an obstruction of the entry pore by the N-terminal flexible extremity of the proteins, nor to an absolute

requirement for the ClpX or ClpC ATPase complex. Finally, we also found that removing the putative propeptides

of ClpP1 and ClpP2 did not result in cleavage of model peptides.

We have also shown that recombinant ClpP1 and ClpP2 do not assemble in the conventional functional

tetradecameric form but in lower order oligomeric species ranging from monomers to heptamers. The

concomitant presence of both ClpP1 and ClpP2 did not result in tetradecameric assembly. Deleting the amino-

terminal extremity of ClpP1 and ClpP2 (the putative propeptide or entry gate) promoted the assembly in higher

order oligomeric species, suggesting that the flexible N-terminal extremity of mycobacterial ClpPs participated in

the destabilization of interaction between heptamers.

Conclusion: Despite the conservation of a Ser protease catalytic triad in their primary sequences, mycobacterial

ClpP1 and ClpP2 do not have conventional peptidase activity toward peptide models and display an unusual

mechanism of self-assembly. Therefore, the mechanism underlying their peptidase and proteolytic activities might

differ from that of other ClpP proteolytic complexes.

Background

In all organisms, ATP-dependent proteases play an

essential role by removing short-lived regulatory pro-

teins whose rapid elimination is critical for cell metabo-

lism and growth [1]. They also allow riddance of

misfolded and damaged proteins that accumulate in a

variety of circumstances, notably during environmental

stress [2]. Simultaneous orchestrated action of key regu-

latory proteins as well as protein quality control

mechanism assure successful survival and virulence of

bacteria.

The Clp (caseinolytic protease) proteolytic system is

one of the major ATP-dependent proteolytic complexes

in bacteria. It consists of a barrel-shaped tetradecameric

ClpP peptidase organized in two-stacked heptameric

rings. The active sites for peptide bond cleavage are

sequestered inside a proteolytic chamber accessible only

through narrow axial pores and whose entry is restricted

to unfolded polypeptides [3]. In E.coli, where the bio-

chemical properties of ClpP have been extensively stu-

died, the peptidase can on its own efficiently degrade

small peptides of up to six amino acid residues [4,5].

Degradation of longer peptides and proteins required
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the interaction of ClpP with an ATPase complex,

namely ClpA or ClpX in most Gram negative bacteria

and ClpX, ClpC, and possibly ClpE and ClpL in Gram

positive bacteria [6]. This ATPase complex, a ring-

shaped hexamer that aligns coaxially with the ClpP pep-

tidase tetradecamer, allows recognition of polypeptide

substrates and, through ATP hydrolysis, provides the

energy required for protein unfolding and translocation

inside the proteolytic chamber where the polypeptide

chain is degraded to small peptides.

Mycobacterium tuberculosis (MTB), the etiologic agent

of tuberculosis in humans, is one of the deadliest patho-

gens on earth, killing nearly 2 million people each year

[7].

MTB has unique biological properties that enable it to

persist in phagosomes for decades in a poorly under-

stood latent form and from where it can be reactivated

and cause active tuberculosis [8]. The phagosome is a

hostile environment which is acidic, nutrient and oxygen

poor, and oxidative and nitrosative due to the produc-

tion of reactive oxygen and nitrogen species by the host

[9]. Consistent with a powerful adaptive capacity, micro-

array studies have shown that MTB survival in macro-

phages is accompanied by changes in expression of

about 600 genes, many of them involved in starvation,

nitrosative and oxidative stress responses [10].

One of the factors potentially involved in the patho-

genesis of MTB is the ClpP proteolytic complex, and

growing evidences have involved this protease in the

virulence of numerous other pathogen bacteria including

Salmonella typhimurium [11], Listeria monocytogenes

[12], Streptococcus pneumoniae [13], Staphylococcus aur-

eus [14], and Helicobacter pylori [15].

The complete genome sequencing of the best-charac-

terized M. tuberculosis strain (H37Rv) has revealed the

presence of two paralog genes encoding putative ClpP

peptidase, clpP1 (Rv2461c) and clpP2 (Rv2460c) (Pasteur

Institute TubercuList, http://genolist.pasteur.fr/Tubercu-

List), probably organized as an operon [16].

Presence of multiple clpP genes is common to actino-

myces, whereas most other bacteria contain only one

clpP gene. clpP2 has been predicted as essential for

growth of MTB by transposon mutagenesis [17]. Both

genes have their expression up-regulated during reaera-

tion of MTB cultures [16] and are important for MTB

to replicate in macrophages [18]. Despite their potential

importance in survival and virulence of MTB, to our

knowledge, functional studies of these peptidases have

not yet been reported.

In this study, in order to gain insight into the mechan-

ism of protein degradation by ClpPs from MTB, we

have produced and purified recombinant ClpP1 and

ClpP2 and tested their peptidase activities. No conven-

tional chymotryptic activity could be detected toward

the model peptide Suc-LY-Amc (N-Succinyl-Leu-Tyr-7

amido 4 methylcoumarin) under conditions that nor-

mally favor ClpP activity. However, ClpP1 was shown to

have a proteolytic activity responsible for its own clea-

vage after the Arg8 residue and cleavage of ClpP2 after

the Ala12 residue. We have investigated whether the

cleavage of model peptides by ClpP1 and ClpP2 would

require their proteolytic processing, deletion of the

amino termini that could prevent peptide entry, or the

presence of the ATPases ClpC and ClpX. We have also

tested how the truncations in the amino-termini of the

proteins would change their oligomeric assembly and

found that they led to a higher order of assembly.

Results

Recombinant ClpP1 and ClpP2 do not cleave the Suc-LY-

Amc peptide but can inhibit E. coli ClpP activity

The Rv2461c and Rv2460c genes encode proteins of

respectively 200 and 214 amino acids annotated as

ClpP1 and ClpP2. Alignment of the primary sequence of

those proteins with that of E. coli ClpP shows a conser-

vation of the Ser, His, and Asp catalytic triad residues

(see additional file 1), indicating that they both have a

putative Ser peptidase activity.

In order to study the mycobacterial ClpP peptidase

activities, clpP1(his)6, clpP2(his)6 and a clpP1-ClpP2(his)6
operon were expressed under the control of T7 promo-

ter in E. coli BL21(DE3) cells. When the corresponding

proteins were purified by a single Ni2+ affinity chroma-

tography and left for several weeks at 4°C, all the pre-

parations exhibited a peptidase activity toward the Suc-

LY-Amc fluorogenic peptides (Figure 1A). However,

replacing the active site serine residue of ClpP1 (Ser 98)

and ClpP2 (Ser 110) by alanine residues did not abolish

the observed peptidase activity (data not shown). When

ClpP1 and ClpP2 were produced in E. coli cells lacking

endogenous ClpP (SG1146a strain), no peptidase activity

toward the Suc-LY-AMC peptide was detected (Figure

1A). Also, when an extract was prepared from empty

vector-expressing BL21(DE3) cells and subjected to a

Ni2+ affinity chromatography, and incubated with the

Suc-LY-Amc peptide, no peptidase activity was found

(see additional file 2). Therefore, E. coli ClpP rather

than MTB ClpP1 and ClpP2 was responsible for the

observed peptidase activities and the co-purification of

E. coli ClpP depends on the presence of ClpP1 or ClpP2.

It is noteworthy that not all protein preparations had

the same specific peptidase activity toward Suc-LY-Amc

nor it could be detected after the same duration of incu-

bation at 4°C. The proteins purified when the ClpP1-

ClpP2(his)6 operon was overexpressed showed the most

rapidly detectable peptidase activity (note that, in the

Figure 1A, only 5 μg of ClpP1/ClpP2(His)6 were used

whereas 10 μg of the other preparations were used), and
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the ClpP1(His)6 preparation needed to be incubated a

longer time at 4°C in order to detect E. coli ClpP pepti-

dase activity.

In order to eliminate the contaminating E. coli ClpP

peptidase activity, the proteins purified when the ClpP1-

ClpP2(his)6 operon was overexpressed were subjected to

a second chromatographic step. The elution fraction of

the Ni2+ column contained mainly ClpP2(His)6 and a

small amount of ClpP1 (data not shown). When sub-

jected to a size exclusion chromatography (SEC), this

protein mixture eluted as a main peak with an elution

volume of 12.6 mL, which corresponds to a species

having an apparent molecular mass of about 104 kDa

(Figure 1B). Active E. coli ClpP peptidase assembles in a

Figure 1 ClpP1 and ClpP2 interact with E. coli ClpP and inhibit its peptidase activity. (A) Hydrolysis of the Suc-LY-Amc peptide was carried

out as described in the Methods section with 5 μg (black triangles) or 10 μg (all other samples) of the indicated purified proteins produced in

BL21(DE3) (closed symbols) or in SG1146a cells (open symbols). (B) Size-exclusion chromatography of recombinant ClpP2 purified from BL21(DE3)

when expressed as the clpP1-clpP2(his)6 operon. 500 μg of purified ClpP2(His)6 was loaded on a Superdex 200 10/30 column as described in the

Methods section. Arrowheads indicate the elution of molecular mass standards with their molecular mass in kDa. The horizontal bar indicates

the fractions that were collected and pooled for measurement of peptidase activity in Figure 1C. (C) Hydrolysis of the Suc-LY-Amc peptide by 10

μg of the recombinant ClpP2(His)6 purified by SEC as described in (B) after 2 (black circles), 17 (black triangles), and 50 (black squares) days of

storage at 4°C. (D) Hydrolysis of the Suc-LY-Amc peptide by 10 μg of total extracts of SG1146a cells overexpressing the pET26b plasmid (open

circles) or BL21(DE3) cells overexpressing the pET26b plasmid (black circles), the pET26b plasmid carrying the clpP1(his)6 (black squares) or the

clpP2(his)6 (black triangles) open reading frames, or the clpP1-clpP2(his)6 operon (black diamonds).
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tetradecameric complex of about 300 kDa. Therefore,

this peak should not contain any active tetradecamer of

E. coli ClpP. Fractions corresponding to the mycobacter-

ial ClpP peak were pooled and stored at 4°C. As seen in

Figure 1C, after two days no peptidase activity was

detectable. After 17 days of storage at 4°C, a peptidase

activity was measurable and this activity kept increasing

after 50 days of storage. Comparable peptidase activity

was observed if the protein mixture was not subjected

to a SEC but no peptidase activity could be observed if

the ClpP1-ClpP2(his)6 operon was overexpressed in the

SG1146a strain and the proteins subjected to a SEC pur-

ification step (data not shown). This suggests that the

major peak eluting from the SEC column at 12.6 mL

contained, in addition to MTB ClpPs, inactive subunits

of E. coli ClpP that could reassemble into an active

complex upon storage at 4°C. This would imply that E.

coli ClpP subunits could associate with MTB ClpP1 and

ClpP2 to form complexes inactive toward the Suc-LY-

Amc peptide. An interaction between E. coli ClpP and

MTB ClpP1 or ClpP2 was demonstrated by co-produ-

cing ClpP1(His)6 or ClpP2(His)6 with untagged E. coli

ClpP and showing that the binding of ClpP to a Ni2+

resin depended on the MTB ClpP1 or ClpP2 (see addi-

tional file 3). To verify that ClpP1 or ClpP2, when inter-

acting with E. coli ClpP, would inhibit ClpP peptidase

activity, we tested whether expression of ClpP1 and

ClpP2 could decrease cleavage of Suc-LY-Amc peptide

by E.coli ClpP. As seen in Figure 1D, a peptidase activity

toward Suc-LY-Amc peptide was detected in total

extract of BL21(DE3) that could be attributed to E. coli

ClpP since it dramatically decreased when clpP was

inactivated (SG1146a strain). Expressing clpP1(his)6,

clpP2(his)6, or the clpP1-clpP2(his)6 operon led to a

decrease in E. coli ClpP peptidase activity, indicating

that MTB ClpPs subunits may interact with E. coli ClpP

subunits and inhibit its activity. Such kind of property

has never been described for any other recombinant

ClpPs produced in E. coli and might reflect a difference

in the assembly pathway of protomers into tetradeca-

mers. Our finding that the purified proteins released the

active E. coli ClpP more rapidly when clpP1 and clpP2

are expressed from an operon than when MTB ClpPs

are produced independently might indicate a stronger,

perhaps physiological, interaction between ClpP1 and

ClpP2. The copurification of ClpP1 with ClpP2 makes

such a hypothesis very likely. Those findings demon-

strated the need to produce MTB ClpP1 and ClpP2 in a

bacterial strain that does not contain any endogenous E.

coli ClpP.

Since we could not detect any chymotryptic peptidase

activity by MTB ClpP1 and ClpP2 toward the Suc-LY-

Amc peptide, we also tested cleavage of other peptides.

ClpP1 and ClpP2, whether produced independently or

from the clpP1-clpP2(his)6 operon, did not cleave the

Bz-VGR-Amc (benzoyl-Val-Gly-Arg 7 amido 4 methyl-

coumarin) or Boc-LRR-Amc (terbutyloxycarbonyl-Leu-

Arg-Arg 7 amido 4 methylcoumarin) peptides (data not

shown), indicating that they do not exhibit trypsin-like

activity toward those peptides in the conditions used in

our assay.

Recombinant MTB ClpP1 and ClpP2 do not assemble into

tetradecamers in solution

One of the hypotheses to explain the absence of any

peptidase activity observed in our assay is the absence of

a tetradecameric assembly. Therefore, the presence of a

correct tetradecameric assembly was examined on puri-

fied ClpP1 and ClpP2. When subjected to SEC, purified

ClpP1 eluted as a species having an apparent molecular

mass of 35 kDa, compatible with monomers and dimers

of ClpP1 (Figure 2, upper panel, solid trace). Purified

ClpP2 eluted as a molecular complex having an appar-

ent molecular mass of about 91 kDa (Figure 2, middle

panel, solid trace). These results indicated that neither

ClpP1 nor ClpP2 assembled in tetradecamers in these

conditions.

The possibility that both ClpP1 and ClpP2 were

needed to promote tetradecamer assembly was tested.

As seen in Figure 2 (upper panel, dashed line), coprodu-

cing ClpP2 with ClpP1 did not dramatically change the

elution volume of purified ClpP1 and similarly coprodu-

cing ClpP1 with ClpP2 did not influence the elution

volume of ClpP2 (middle panel, dashed line). Further-

more, mixing purified ClpP1 and ClpP2 did not change

the elution volumes of individual ClpP1 or ClpP2 (Fig-

ure 2, lower panel). Therefore, tetradecameric assembly

was not mutually induced by the presence of either

ClpP1 or ClpP2.

It is noteworthy that the presence of a His tag at the

C-termini of ClpP1 and ClpP2 could not explain the

absence of tetradecamer formation since producing and

purifying untagged ClpP1 and ClpP2 led to the same

oligomeric assembly as His tagged peptidases (data not

shown).

Peptidase activity and assembly of processed ClpP1 and

ClpP2

We then explored different procedures to stimulate the

peptidase activity and to promote correct tetradecameric

assembly of ClpP1 and ClpP2.

In E. coli, ClpP matures as an active peptidase by the

autoproteolytic removal of the first 14 amino acid resi-

dues [19,20]. In the X-ray structure of MTB ClpP1, the

first 14 residues are not visible and it was suggested that

the N-terminus of the protein was disordered and might

prevent the entry of small peptides into the central pro-

teolytic cavity, explaining the lack of peptidase activity
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[21]. We thus tested whether processed ClpP1 and

ClpP2 would correctly assemble in tetradecamers and

exhibit chymotryptic activity.

Processed E. coli ClpP has been shown to start with

Ala15 [19]. Based on alignment with E.coli ClpP, ClpP1

is not expected to be processed (Figure 3). If aligned

with the whole sequence of Streptomyces ClpP1 (a closer

ortholog), it could be processed at Met7. However, it

was shown that Streptomyces ClpP1 had another puta-

tive initiation codon according to the codon usage [22]

and if aligned with the streptomyces ClpP1 sequence

starting with this second putative initiation codon MTB

ClpP1 would be processed at the Ser9 residue (Figure 3).

Based on alignement with E.coli ClpP, ClpP2 is pre-

dicted to be processed at Tyr14. In Streptomyces, mature

ClpP2 was shown to start at Val37 [22], which would

predict that mature MTB ClpP2 starts with the Ile15

residue (Figure 3).

Several truncated variants of ClpP1 starting with Met7

(M7ClpP1) or Ser9 (S9ClpP1), and of ClpP2 starting

with Arg13 (ClpP2R13), Tyr14 (ClpP2Y14), Ile15

(ClpP2I15), or Leu16 (ClpP2L16) residues were pro-

duced and purified in SG1146a cells (see additional file

4), and analyzed for peptide cleavage and oligomeric

assembly.

Removing the putative prosequences of ClpP1 did not

change its elution during SEC (data not shown). Like-

wise, most of the processed ClpP2 variants eluted with

an elution volume comparable to that of wild-type

ClpP2 (data not shown). However, the ClpP2R13 variant

surprisingly eluted as three main species. In order to

determine precisely the nature of these different oligo-

meric species, full-length ClpP2 and the ClpP2R13 var-

iant were subjected to size-exclusion chromatography

coupled online to a triple detector array (SEC-TDA) and

further analyzed by static light scattering measurements.

In SEC-TDA experiment, the analysis of full-length

ClpP2 peak indicated the presence of a range of assem-

blies with a weight average molecular mass of 140 kDa

compatible with hexamers or heptamers of ClpP2 subu-

nits (Figure 4, upper panel). Analysis of the ClpP2R13

variant by SEC-TDA indicated species with molecular

masses of 482.5 kDa, 148.0 kDa and 46.3 kDa corre-

sponding to 21-mer, heptamer, and dimer species

respectively (Figure 4, lower panel). The 21-mer oligo-

meric species was also observed during the elution of

the ClpP2Y14, but in a lower amount (data not shown).

This high molecular weight complex is reminiscent of

Figure 2 Oligomeric assembly of recombinant ClpP1 and

ClpP2. 75 μg of recombinant ClpP1 (upper panel, solid line) or

ClpP2 (middle panel, solid line) produced independently or in the

presence of ClpP2 (upper panel, dashed line) and ClpP1 (middle

panel, dashed line) respectively were loaded on a superdex 200 10/

30 column as described in the Methods section. In the lower panel,

75 μg of ClpP1 were mixed with 75 μg of ClpP2 and incubated 2 h

at room temperature before being loaded on the superdex 200

column. Arrowheads indicate the elution of molecular mass

standards with their molecular mass in kDa and the deduced

apparent molecular masses are shown under the corresponding

protein names.
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that observed with E. coli ClpP in the absence of salt

[19] and could correspond to three stacked heptameric

rings. Therefore, removing the putative prosequence of

ClpP2 did promote the formation of higher order oligo-

mers but not of the expected tetradecamer. None of

those ClpP1 or ClpP2 variants exhibited any activity

toward Suc-LY-Amc or Boc-LRR-Amc peptides (data

not shown). Thus, removing putative prosequences was

not sufficient for allowing ClpP1 and ClpP2 to assemble

into tetradecamers with activity toward model peptides.

Deleting the entry gate does not activate ClpP1 and

ClpP2

Since the N-terminal extremity of ClpP2 influenced its

oligomerisation state, we tested whether further dele-

tions in their N-termini would favor assembly of ClpP1

and ClpP2 in tetradecamer.

Recent studies have demonstrated a gating mechanism

for E. coli ClpP comparable to that of proteasomes, a

self-compartmentalized protease with a similar barrel-

shaped architecture. In general, the first 20 residues of

mature ClpP (after its processing) adopt a flexible confor-

mation that can explain why they are not always visible in

electron density map. In the mature processed ClpP, the

N-terminal extremity can adopt different secondary

structures and therefore modulate the size of the entry

pore [23]. In the “up” conformation, a portion of the N-

terminus extends outwards the access pore whereas in

the “down” conformation it is located within the axial

pore. For E. coli ClpP, removing the residues involved in

the gating mechanism allowed degradation of unfolded

substrates in the absence of the ATPase complex [24].

For the eukaryotic 20S proteasomes, the entry gate pre-

cludes entry of even small size peptides [25].

In MTB ClpP1, the residues Ser15-Glu27 fold as a

helix that is longer than the corresponding helix in ClpP

orthologues and that protruded into the axial pore of

the tetradecamer, making a gating mechanism likely

[21]. To see whether removing the putative gate in

MTB ClpP1 and ClpP2 would have an effect on peptide

cleavage, N-terminal gate deletion variants were con-

structed based on the alignment with E. coli ClpP (Fig-

ure 5A). In E. coli, deletion of the first 10, 14, and 17

first amino acids (based on the numbering of mature

ClpP) activated degradation of unfolded substrates to a

different extent, with the ∆ 14ClpP variant being the

most active. Corresponding deletion variants were pro-

duced and their peptidase activity and tetradecameric

Figure 3 Putative N-terminal processing sites for MTB ClpP1 and ClpP2. The N-terminal sequences of MTB ClpP1 (H37Rv strain, gi:

41353667) and ClpP2 (H37Rv strain, gi: 2791500) were aligned with that of E. coli ClpP (gi: 89107307) and with those of S. coelicolor ClpP1 (gi:

10280519) and ClpP2 (10280518) respectively using ClustalW program http://www.ebi.ac.uk/Tools/msa/clustalw2. The propeptides of E. coli ClpP

and Streptomyces ClpP1 and ClpP2 are written in italics and the first residues of mature ClpPs are indicated in bold. The putative first residues of

MTB ClpP1 and ClpP2 are written in bold and indicated with an asterisk.
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assembly were tested. None of them exhibited any sig-

nificant peptidase activity toward the Suc-LY-Amc pep-

tide (data not shown), suggesting that the absence of

chymotryptic activity toward this peptide in WT ClpP1

and ClpP2 was not due to any obstruction of the pore

entrance by their N-termini.

When we examined their assembly by SEC-TDA, we

found that when the first 15 residues of ClpP1 were

absent, an additional peak was detected. Indeed, full-

length ClpP1 exhibited the presence of a several assem-

blies with molecular masses ranging from 30 to 70.5

kDa compatible with complexes varying from monomers

Figure 4 Effect of removing putative propeptide on the assembly of ClpP2. 200 μg of purified ClpP2 (upper panel) or of the ClpP2R13

variant (lower panel) were subjected to a size exclusion chromatography as followed by a triple detector array as described in the Methods

section. The refractive index (black line) and the molecular mass (red line) were plotted as a function of the elution volume. Average molecular

weights obtained by static light scattering are indicated at the top of each peak.
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Figure 5 Effect of removing the putative gate on the assembly of mature ClpP1. (A) The N-terminal sequences of MTB ClpP1 (H37Rv strain,

gi: 41353667) and ClpP2 (H37Rv strain, gi: 2791500) were aligned with that of E. coli ClpP (gi: 89107307). The propeptide of E. coli ClpP is written

in italics. The first residues of deletion variants of E. coli ClpP are indicated in bold and by an asterisk above the sequence. The corresponding

residues in MTB ClpP1 and ClpP2 sequences are written in bold and indicated with an asterisk below their sequences. (B) 200 μg of purified

ClpP1 (upper panel) or of the ClpP1L16 variant (lower panel) were subjected to a size exclusion chromatography as followed by a triple detector

array as described above.
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to trimers of ClpP1 subunits (Figure 5B, upper panel).

The ClpP1L16 variant eluted as a sharper peak corre-

sponding to a species having a molecular mass complex

of about 150 kDa, compatible with ClpP1 heptamers

(Figure 5B, lower panel). Thus, removing the N-terminal

extremity of ClpP1 likely favors assembly of the ClpP1

heptamericring.

Deleting the amino terminal residues of ClpP2 slightly

decreased its elution volume during SEC but did not

promote higher order oligomeric assembly above hepta-

meric form (data not shown). These finding indicated

that further removing the N-terminal extremities of

ClpP1 and ClpP2 could stabilize the heptamericring.

Coproduction of the peptidases with the ATPases ClpC1

and ClpX

Most of ClpPs, when tested, are able to degrade small

peptides in the absence of the ATPase complex. One

exception is the human mitochondrial ClpP that

required the ATPase ClpX to assemble into stable tetra-

decamer with a high peptidase activity [26]. In the MTB

genome, three genes have been annotated as Clp/hsp100

proteolysis associated ATPase, clpC1 (Rv3596c), clpC2

(Rv2667), and clpX (Rv2457c) (Pasteur Institute Tuber-

cuList, http://genolist.pasteur.fr/TubercuList).

Primary sequences of ClpC1 and ClpX contain the

typical Clp ATPase features, i. e. one or two AAA

(ATPase Associated with various cellular Activities)

domains. However, ClpC2 protein does not exhibit any

AAA or other ATPase motif and the purified ClpC2 did

not have any ATPase activity (unpublished data). The

presence of two ClpN domains in the ClpC2 sequence

might have been at the origin of the mistaken annota-

tion of this open reading frame as a Clp ATPase. There-

fore, only ClpC1 and ClpX seem to be putative ATPase

partners for ClpP1 and ClpP2 peptidases. To investigate

whether MTB ClpP1 and ClpP2 require their ATPase

partners to hydrolyze peptides, ClpP1 and ClpP2 were

produced with ClpC or ClpX (Figure 6A) and peptide

cleavage was tested in total extracts. The presence of

ClpX or ClpC did not result in Suc-LY-Amc hydrolysis

(Figure 6B). Therefore, the absence of Suc-LY-Amc clea-

vage by ClpP1 and ClpP2 was not due to a requirement

for the ATPase complex.

ClpP1 is responsible for ClpP1 and ClpP2 processing

When produced in E. coli, ClpP1 migrated as two bands

on SDS-PAGE (Figure 7A, lane 1). Microsequencing

revealed that the upper band contained a protein start-

ing with SQVTDM, corresponding to a full-length

ClpP1 that had its initiating methionine residue

removed. The smaller protein in ClpP1 preparation

(labeled * in Figure 7A) started with SNSQG, corre-

sponding to ClpP1 starting at the Ser9 residue. When

the Ser catalytic residue of ClpP1 was replaced by an

Ala (Ser98Ala variant), this form of ClpP1 was not visi-

ble (Figure 7A, lane 2). Therefore, proteolytic activity of

ClpP1 was responsible for its own cleavage.

ClpP2 migrated mainly as a single band on SDS-PAGE

(Figure 7A, lane 3). Microsequencing showed that it cor-

responded to the full-length ClpP2 (starting with

MNSQNS residues). When ClpP2 was coproduced with

ClpP1, two bands were obtained (Figure 7A, lane 4).

The protein of the upper band started with MNSQNS

residues and corresponded to full-length ClpP2. The

protein in the lower band (labeled ** in Figure 7A and

7B) started with RYILP and corresponded to ClpP2

starting at the Arg13 residue. Therefore, coproducing

ClpP1 and ClpP2 led to processing of ClpP2. In order to

test which peptidase was responsible for ClpP2 proces-

sing, we inactivated ClpP1 and ClpP2 by replacing their

active site serine by an alanine residue (ClpP1Ser98Ala

and ClpP2Ser110Ala) in the clpP1-clpP2(his)6 operon.

Inactivating ClpP2 only did not prevent its processing

(Figure 7B, lane 3) whereas ClpP2 processing was not

observed when ClpP1 was inactivated (Figure 7B, lane

2). Altogether, these results demonstrated that recombi-

nant ClpP1 possessed a proteolytic activity responsible

for its own cleavage after the Arg8 residue and for

ClpP2 cleavage after the Ala12 residue. It is noteworthy

that the truncated ClpP1 form produced by the proteo-

lytic activity of ClpP1 corresponded to the putative pro-

cessed ClpP1 as predicted by sequence alignment. In

ClpP2, the processing cleavage site catalyzed by ClpP1

was in the vicinity of that predicted by sequence align-

ment. In conclusion, even though no Suc-LY-amc clea-

vage was observed by ClpP1, this peptidase exhibited

the ability to hydrolyze a peptide bond.

Discussion

Most of our knowledge on the mechanism of protein

degradation by ClpP protease is based on studies of E.

coli ClpP. This peptidase is able alone to hydrolyze the

model dipeptide Suc-LY-Amc in vitro [5]. In this study,

we have shown that, in conditions that normally allow

Suc-LY-Amc cleavage by E. coli ClpP, MTB ClpP1 and

ClpP2 do not hydrolyze this model peptide. However, a

proteolytic activity was uncovered for ClpP1, ruling out

the possibility that, at least for ClpP1, those peptidases

were produced in E. coli as totally inactive.

An absence of peptidase activity was not due to the

presence of a His tag at the C-termini of ClpP1 or

ClpP2 since purifying those peptidases without any tag

did not allow hydrolysis of Suc-LY-Amc or of other

model peptides, nor it promoted correct tetradecameric

assembly.

A failure to detect model peptide cleavage was not

due to an obstruction of the entry pore by the N-
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terminal extremities of ClpP1 and ClpP2, predicted to

be highly flexible, since removing these extremities did

not result in peptide cleavage. Furthermore, coproducing

the ClpX and ClpC ATPase complexes with ClpP1 and

ClpP2 did not allow Suc-LY-Amc cleavage, showing that

an absence of peptide model hydrolysis by mycobacterial

ClpPs was not due to an obligatory requirement for the

ATPases.

One plausible explanation for an absence of Suc-LY-

Amc cleavage would be that mycobacterial ClpPs

MW 

(kDa) 

ClpP1 

1 

100.0 

72.0 

55.0 

35.0 

25.0 

10.0 

130.0 

250.0 

2 3 4 5 6 7 8 9 

ClpP2 

ClpP1 

ClpP2 

* * 
* 

* * * 

ClpC 

ClpX 

ClpP2 

ClpP1 

A 

B B

Figure 6 Coproducing ClpP1 and ClpP2 with ClpX and ClpC ATPases did not result in Suc-LY-Amc cleavage. (A) 10 μg of total extract of

cells producing ClpP1 (lane 1), ClpP1 and ClpX (lane 2), ClpP1 and ClpC (lane 3), ClpP2 (lane 4), ClpP2 and ClpX (lane5), ClpP2 and ClpC (lane 6),

ClpP1 and ClpP2 without (lane 7) or with ClpX (lane 8) or ClpC (lane 9) were loaded on a 4-15% gradient SDS-PAGE stained with coomassie

blue. The electrophoretic mobilities of ClpX and ClpC are indicated by asterisks. The molecular masses of the markers were indicated on the left

in kDa. (B) Hydrolysis of the Suc-LY-Amc peptide in the absence (black trace) or in the presence of 10 μg of total extracts of SG1146a cells

overexpressing clpP1(his)6 and clpX (left panel, green trace), clpP2(his)6 and clpX (left panel, blue trace), the clpP1-clpP2(his)6 operon together with

clpX (left panel, red trace), clpP1(his)6 and clpC (right panel, green trace), clpP2(his)6 and clpC (right panel, blue trace), the clpP1-clpP2(his)6 operon

together with clpC (right panel, red trace).
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Figure 7 Proteolytic processing of ClpP1 and ClpP2 by ClpP1. (A) 2.5 μg of pure ClpP1 (lane 1), of ClpP1S98A variant (lane 2), of pure ClpP2

(lane 3), and 4.0 μg of purified ClpP2 produced in the presence of ClpP1 (lane 4) were loaded on a 15% SDS-PAGE stained with Coomassie

blue. The molecular masses of the markers were indicated on the left in kDa. (B) 2.0 μg of purified ClpP2 produced in the presence of ClpP1

(lane 1) or in the presence of ClpP1S98A (lane 2), and 2.0 μg of purified ClpP2S110A purified in the presence of ClpP1 (lane 3) or in the

presence of ClpP1S98A (lane 4) were loaded on a 15% SDS-PAGE stained with Coomassie blue. The molecular masses of the markers were

indicated on the left in kDa.
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require different physico-chemical conditions to hydro-

lyze this peptide than those needed by E. coli ClpP. In

fact, based on crystal structure determination, the tetra-

decamer of ClpPs from different organisms could be

grouped into two structural states: an extended state

fully active toward the Suc-LY-Amc model peptide

(seen with E. coli, Homo sapiens, H. pylori ClpPs) and a

more compact state that likely corresponds to an inac-

tive state (seen with M. tuberculosis, S. pneumoniae,

Plasmodium falciparum) [27]. Recombinant ClpP1 and

ClpP2 might be isolated in the compact state and

require specific physico-chemical conditions to switch to

the extended fully active conformation toward model

peptides.

Also, the specificities of peptide bond hydrolysis could

be different than those of E. coli ClpP. Indeed, the nat-

ure of the amino acid in the P1 position relative to the

scissile peptide is important in controlling the hydrolysis

rate. For instance, E. coli ClpP has been shown to exhi-

bit the greatest degradation rate when a large aromatic

amino acid residue is in the P1 position (as in the Suc-

LY-Amc peptide) [28].

However, this feature is not shared by all ClpPs since

P. falciparum ClpP exhibited a preference for an Arg

residue in P1 position [29]. Likewise, MTB ClpP1 and

ClpP2 could require another amino acid residue at the

P1 position. Consistent with such a hypothesis is our

finding that ClpP1 can cleave a peptide bond after Ala

and Arg residues. In the light of these findings, short

peptides of those specificities (H-A-Amc, Suc-AAA-

Amc, H-GR-Amc, Boc-LRR-Amc, Bz-VGR-Amc) were

tested but none of them were cleaved by ClpP1 or

ClpP2. Determination of the peptide specificities of

MTB ClpPs must await further studies.

In this study, we have also shown that recombinant

MTB ClpP1 and ClpP2 could not assemble as tetradeca-

mers in solution. Determining the X-ray structure of

ClpP1 has shown that ClpP1 could assemble in a tetra-

decamer under the crystal conditions but the interac-

tions between the two heptamers that stabilize the

tetradecamer were weaker than those in other ClpPs;

and ClpP1 was mainly isolated as a heptamer in solution

[21]. Our findings suggest that a weak interaction

between heptamers could also apply for ClpP2 assembly.

In our study, we showed that deleting the amino-term-

inal extremity of ClpP1 and ClpP2 favored a higher

order assembly. In most of the deposited X-ray struc-

tures, the amino-terminal extremity of mature ClpP is

unmodelled because non interpretable in the electron

density. This suggested a high flexibility in this portion

of the protein. Indeed, Bewley et al. [23] demonstrated

that the first 20 residues in the mature E. coli ClpP

could adopt two different conformations. In the X-ray

structures of the unprocessed full length MTB ClpP1,

the first 15 residues were not visible and the Ser15-

Glu27 portion formed a a-helix longer than in other

orthologous ClpPs that partially occupies the axial pore

[21]. The flexibility of this might hinder a correct

assembly of mycobacterial ClpPs and a deviation in its

conformation form other orthologous ClpPs might

explain a difference in the stabilization of the tetradeca-

mer. Whether an interaction of mycobacterial ClpPs

with the ATPase ClpX and ClpC could stabilize a tetra-

decameric assembly remains to be tested.

Despite that recombinant ClpP1 did not assemble in a

tetradecamer, it exhibited a proteolytic activity that was

reminiscent of the autocatalytic processing of ClpP pro-

teases. Autocatalytic processing in ClpP might not

require the tetradecameric functional assembly required

for the processive proteolytic activity of ClpP. Indeed, the

minimal functional structure for the hydrolytic activity of

ClpP was found to be a single heptameric ring [30].

Conclusion

In this study, we have uncovered an unconventional

mechanism of oligomeric assembly and proteolytic activ-

ity for MTB ClpP1 and ClpP2 that are distinct from

those of other ClpPs, especially the well-characterized E.

coli ClpP. A better knowledge of such ATP-dependent

proteases which are potentially important for the survi-

val and virulence of MTB could offer new hope in the

need for developing new drug to treat tuberculosis.

Methods

Bacterial strain and primers

E. coli BL21(DE3) [31] (Novagen) and BL21(DE3) ClpP::

cam (SG1146a) (Susan Gottesman) strains were used to

express recombinant proteins. All primers used are

listed in the additional file 5.

Cloning of clpP2 (Rv2460c) and clpP1 (Rv2461c) ORFs

clpP1 ORF (Rv2461c) was amplified by PCR and cloned

into the pET26b vector (Novagen) using the ClpP1-

5Nde and ClpP1-3Xho primers (see additional file 5) at

the NdeI and XhoI sites, giving rise to the pNB71 plas-

mid containing the clpP1 ORF with a C-terminal (His)6
tag. clpP2 ORF (Rv2460c) was amplified by PCR using

the ClpP2-5Nde and ClpP2-3HindChis primers and

cloned at the NdeI and HindIII sites into the pet26b

vector, giving rise to the pNB74 plasmid in which the

clpP2 ORF was C-terminal (His)6 tagged.

The plasmid expressing the clpP1-clpP2(his)6 operon

was constructed by first amplifying the clpP1 ORF with

the ClpP1-5Nde and ClpP1-3Hind primers and cloned

at the NdeI and HindIII sites into the pET26b vector.

The resulting plasmid was named pNB70. The clpP2

(his)6 ORF was amplified by PCR from the pNB74 plas-

mid using the rbsClpP2Hind and ClpP2-3Not primers
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and introduced at the HindIII and NotI sites into the

pNB70 plasmid. The resulting plasmid was named

pNB82. clpP1 C-terminal (His)6 tagged ORF starting at

the Met7, Ser9, Ser11, Gln12, Leu16, and Ser 19 resi-

dues were obtained by PCR amplification using the

ClpP1M7, ClpP1S9, ClpP1S11, ClpP1Q12, ClpP1L16

and ClpP1S19 primers respectively as well as the ClpP1-

3Xho primer and introduced at the NdeI and XhoI sites

into the pET26b vectors. clpP2 C-terminal (His)6 tagged

ORF starting at the Arg13, Tyr14, Ile15, Leu16, Ser 23,

Ser24, Lys28, and Asn 31 residues were obtained by

PCR amplification using the ClpP2R13, ClpP2Y14,

ClpP2I15, ClpP2L16, ClpP2S23, ClpP2S24, ClpP2K28,

and ClpP2N31 primers respectively as well as the

ClpP2-CHis primer and introduced at the NdeI and

HindIII sites into the pET26b vector. DNA sequence of

all open reading frames was checked by DNA sequen-

cing (Beckman Coulter Genomics).

Protein production and purification

Cells were cultivated at 30°C in Luria-Bertani (LB) med-

ium supplemented when necessary with 30 μg/mL of

kanamycin and 25 μg/mL of chloramphenicol. BL21

(DE3) or SG1146a cells were transformed with an

expression vector carrying the clpP1 and/or clpP2 ORFs

and cultivated until an OD600 of 0.6. Protein expression

was then induced with 1 mM isopropyl-b-D-thiogalacto-

pyranoside (IPTG). After centrifugation, cell pellets were

resuspended in the buffer A (50 mM NaH2PO4 pH 8.0,

300 mM NaCl, 10 mM Imidazole, 10% glycerol) and

lysed by sonication. The soluble fraction obtained after a

60 minutes centrifugation at 40,000 g at 4°C was loaded

on nickel-nitrilotriacetic (Ni-NTA) resin (Qiagen) and

the resin was washed with buffer A. His-tagged proteins

were eluted with buffer B (50 mM NaH2PO4 pH 8.0,

300 mM NaCl, 250 mM Imidazole, 10% glycerol). After

elution, His-tagged proteins were dialyzed against 50

mM Tris-HCl pH 7.5, 200 mM KCl, 2 mM DTT, 0.1

mM EDTA, 10% glycerol and concentrated. Protein con-

centrations were determined with Coomassie Plus Pro-

tein Assay Reagent (Thermo Scientific).

Inactivation of ClpP1 and ClpP2

The active site Ser residues in ClpP1 (Ser98) and in

ClpP2 (Ser110) were replaced by an Ala residue using

the Quick Change Multi Site-Directed Mutagenesis kit

(Stratagene) according to the manufacturer’s recommen-

dation with the ClpP1S98A and ClpP2S110A primers

respectively. ClpP1 and ClpP2 variants were produced

and purified in SG1146a cells as described above.

Peptide hydrolysis

1 mM of fluorogenic Suc-LY-Amc peptide diluted in

100% DMSO was incubated with purified ClpP1 or

ClpP2 or with total extracts as indicated at 37°C in 50

mM Tris pH 7.5, 100 mM KCl and 1 mM DTT. Hydro-

lysis of the peptide was followed by measuring the

release of amc (7-amino-4-methylcoumarin) in a spec-

trofluorometer (lex 380 nm; lem 460 nm).

Size exclusion chromatography

SEC was carried out at room temperature on a Superdex

200 10/30 column (GE Healthcare) equilibrated with 25

mM Tris-HCl, pH 7.5, 150 mM KCl, and 1 mM DTT.

Elution was performed using the same buffer at a flow

rate of 0.5 mL/min, and absorbance was measured at 280

nm. The column was calibrated with Ferritin (440 kDa),

Catalase (232 kDa), Aldolase (158 kDa), Bovin Serum

Albumin (67 kDa), Ovalbumin (43 kDa), Chymotrypsino-

gen (25 kDa), and Ribonuclease (17.3 kDa).

For the SEC-TDA, samples were separated according

to their hydrodynamic size on the same Superdex 200

column in 25 mM Tris-HCl, pH 7.5, 150 mM KCl, and

1 mM b-mercaptoethanol at 20°C. Molecular masses of

the eluted sample were determined online on a TDA

model 302 (Malvern Instruments Ltd, UK) at 20°C. The

TDA contains 4 detectors in line: (i) a static light-scat-

tering cell with two photodiode detectors at 7° for low-

angle light scattering (LALS) and at 90° for RALS, (ii) a

deflection refractometer, (iii) a photometer, and (iv) a

differential viscometer. BSA was used for molecular

mass calibration, and all data were acquired and pro-

cessed using the Omnisec software (Viscotek Ltd.) as

described elsewhere [32].

Coproduction of ClpP1 and ClpP2 with the ClpC and ClpX

ATPases

The clpX ORF (Rv2457c) was PCR amplified using the

ClpX-5Nco and ClpX-3Hind primers and introduced at

the NcoI and HindIII sites into the pCDFDuet vector

(Novagen). The resulting plasmid was named pNB104.

The clpP1 ORF was amplified using the ClpP1-5Nde

and ClpP1-3Pac primers and introduced at the NdeI

and PacI in the pNB104 plasmid. The final plasmid

(pNB106) contained the clpX and clpP1(his)6 under the

control of two independent T7 promotors.

In order to express clpP2 together with ClpX, the clpP2

ORF was first amplified with the ClpP2-5Nco and ClpP2-

CHis primers and cloned into the pCDFDuet vector at

the NcoI and HindIII sites. The resulting plasmid was

named pNB79. The clpX ORF was amplified with the

ClpX-5Nde and ClpX-3Pac primers and introduced into

the pNB79 plasmid at the NdeI and PacI sites. The

resulting plasmid (pNB107) contained the clpP2(his)6 and

the clpX ORF under two independent T7 promotors.

The clpC ORF (Rv3596c) was PCR amplified using the

ClpC-5Nco and ClpC-3Hind primers and introduced at

the NcoI and HindIII sites into the pCDFDuet vector.
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The resulting plasmid was named pNB108. Then, the

clpP1 ORF introduced at the NdeI and PacI in the

pNB108 plasmid as described for the pNB106 plasmid.

The final plasmid (pNB110) contained the clpC and

clpP1(his)6 under the control of two independent T7

promotors.

In order to express clpP2 together with clpC, the clpC

ORF was first amplified with the ClpC-5Nde and ClpC-

Pac primers and cloned into the pNB79 plasmid at the

NdeI and PacI sites. The resulting plasmid was named

pNB111 and it contained the clpP2(his)6 and the clpX

ORF under two independent T7 promotors.

SG1146a cells were transformed with the pNB104,

pNB106, pNB107, pNB108, pNB110, pNB111 plasmids

with or without pNB82 as indicated in the legends. Cells

were cultivated at 30°C in LB medium complemented

when necessary with 30 μg/mL of kanamycin, 50 μg/mL

of streptomycin and 25 μg/mL of chloramphenicol. Pro-

tein production was induced with IPTG as described

above and cells were harvested. Cells pellets were resus-

pended in 50 mM Tris-HCl pH 7.5, 200 mM KCl, 2

mM DTT, 0.1 mM EDTA, 10% glycerol and lyzed by

sonication. Peptide hydrolysis was measured in 50 mM

Tris pH 7.5, 100 mM KCl and 1 mM DTT, 10 mM

MgCl2, 4 mM ATP and 0.02% Triton X100 as described

above.

Additional material

Additional file 1: Figure S1: Sequence alignment of MTB ClpP1 and

ClpP2 with that of E. coli ClpP. The sequences of MTB ClpP1 (H37Rv

strain, gi: 41353667) and ClpP2 (H37Rv strain, gi: 2791500) were aligned

with that of E. coli ClpP (gi: 89107307) using ClustalW program http://

www.ebi.ac.uk/Tools/msa/clustalw2. The propeptide of E. coli ClpP is

written in bold. The residues in the catalytic triad (Ser, His, Asp) are

indicated in bold and underlined. Identical (*), the similar (.), and very

similar (:) residues are indicated below the sequences.

Additional file 2: Figure S2: Peptidase activity of E. coli ClpP

copurified with ClpP1 and ClpP2. Hydrolysis of 1 mM Suc-LY-Amc

peptide in the presence of 10 μg of Ni2+ column-purified proteins from

BL21(DE3) cells overexpressing the pET26b plasmid (black triangles), BL21

(DE3) cells overexpressing the clpP1-clpP2(his)6 operon (black squares), or

SG1146a cells overexpressing the clpP1-clpP2(his)6 operon (black circles)

after 50 days of storage of the protein preparation at 4°C. Hydrolysis of

the peptide was followed by measuring the release of amc (7-amino-4-

methylcoumarin) in a spectrofluorometer (lex 380 nm; lem 460 nm).

Additional file 3: Figure S3: Interaction of E. coli ClpP with ClpP1 or

ClpP2. Soluble extracts were prepared from SG1146a cells producing

untagged E. coli ClpP alone or together with ClpP1(His)6 or ClpP2(His)6
and loaded on a Ni2+ column. After extensive washing with buffer A (50

mM NaH2PO4 pH 8.0, 300 mM NaCl, 10 mM Imidazole, 10% glycerol),

resin-bound proteins were eluted with buffer B (50 mM NaH2PO4 pH 8.0,

300 mM NaCl, 250 mM Imidazole, 10% glycerol). The presence of E. coli

ClpP was analyzed by a 15% SDS-PAGE and detected by immunoblot

using an anti ClpP antibody that exhibited cross-reaction with ClpP1 and

ClpP2. (A) The indicated samples were loaded on a 15% SDS-PAGE

stained with Coomassie blue. The molecular mass markers are indicated

on the left. Lanes 1-3: 10 μg of the soluble extract of SG1146a cells

producing untagged E. coli ClpP (lane 1), ClpP1(His)6 (lane 2), or

untagged E. coli ClpP together with ClpP1(His)6 (lane 3) that were loaded

on the Ni2+ column. Lanes 4-6: proteins eluted from Ni2+ column when

SG1146a cells produced untagged E. coli ClpP (lane 4), ClpP1(His)6 (lane

5), or untagged E. coli ClpP together with ClpP1(His)6 (lane 6). The upper

band in lane 6 is ClpP1(His)6 as determined by anti His tag immunoblot

(data not shown) and the lower band is E. coli ClpP as determined by

anti ClpP immunodetection in the panel (C). (B) The indicated samples

were loaded on a 15% SDS-PAGE stained with Coomassie blue. The

molecular mass markers are indicated on the left. Lanes 1-3: 10 μg of the

soluble extract of SG1146a cells producing untagged E. coli ClpP (lane 1),

ClpP2(His)6 (lane 2), or untagged E. coli ClpP together with ClpP2(His)6
(lane 3) that were loaded on the Ni2+ column. Lanes 4-6: proteins eluted

from Ni2+ column when SG1146a cells produced untagged E. coli ClpP

(lane 4), ClpP2(His)6 (lane 5), or untagged E. coli ClpP together with

ClpP2(His)6 (lane 6). The upper band in lane 6 is ClpP2(His)6 as

determined by anti His tag immunoblot (data not shown) and the lower

band is E. coli ClpP as determined by anti ClpP immunodetection in the

panel (C). (C) Immunodetection of ClpP proteins in 2 μg of soluble

extract of SG1146a cells producing E. coli ClpP (lane 1) and in the sample

eluted from the Ni2+ column when the SG1146a cells produced

untagged E. coli ClpP (lane 2), ClpP1(His)6 (lane 3), ClpP2(His)6 (lane 4),

untagged E. coli ClpP together with ClpP1(His)6 (lane 5), or untagged E.

coli ClpP together with ClpP2(His)6 (lane 6). The proteins were separated

on a 15% SDS-PAGE and transferred onto nitrocellulose. The ClpP

proteins were detected using an anti ClpP antibody that interacted with

MTB ClpP1 and ClpP2 as well as with E. coli ClpP. Experimental evidence

of an interaction between E. coli ClpP and MTB ClpP1 or ClpP2 was also

observed by producing E. coli ClpP(His)6 together with S-tagged ClpP1 or

ClpP2 (data not shown).

Additional file 4: Figure S4: Purified ClpP1 and ClpP2 variants.

About 5 μg of the indicated purified proteins were loaded on a 12%

SDS-PAGE stained with Coomassie blue. The molecular mass markers are

indicated on the left. (A) Full length ClpP1 (M1) and the variants starting

at the Met7 (M7) and Ser9 (S9). (B) Full length ClpP2 (M1) and the

variants starting at Arg13 (R13), Tyr14 (Y14), Ile15 (I15), Leu16 (L16). (C)

Full length ClpP1 (M1) and the variants starting at the Ser11 (S11), Gln12

(Q12), Leu16 (L16), and Ser19 (S19). (D) Full length ClpP2 (M1) and the

variants starting at the Ser23 (S23), Ser24 (S24), Lys28 (K28), and Asn31

(N31).

Additional file 5: Table S1: Oligonucleotides used in this study.

List of abbreviation used

Clp: caseinolytic protease; ORF: open reading frame; MTB: Mycobacterium

tuberculosis; Suc-LY-Amc: N-Succinyl-Leu-Tyr-7 amido 4 methylcoumarin; Bz-

VGR-Amc: benzoyl-Val-Gly-Arg-7 amido 4 methylcoumarin; Boc-LRR-Amc:

terbutyloxycarbonyl-Leu-Arg-Arg-7 amido 4 methylcoumarin; SEC: size-

exclusion chromatography; SEC-TDA: size-exclusion chromatography coupled

online to a triple detector array; DTT: dithiothreitol; ATP: adenosine

triphosphate; IPTG: isopropyl-β-D-thiogalactopyranoside.
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