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Abstract

Background: The cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) are innate cellular factors that inhibit

replication of a number of viruses, including HIV-1. Since antiviral activity of APOBEC3 has been mainly confirmed

by in vitro data, we examined their role for disease progression in the SIV/macaque model for AIDS.

Results: We quantified A3G and A3F mRNA in PBMC and leukocyte subsets of uninfected and SIVmac-infected

rhesus macaques. Compared with uninfected animals, we found increased A3G and A3F mRNA levels in PBMC,

purified CD4+ T-cells and CD14+ monocytes as well as lymph node cells from asymptomatic SIV-infected

macaques. APOBEC3 mRNA levels correlated negatively with plasma viral load, and highest amounts of APOBEC3

mRNA were detected in long term non-progressors (LTNPs). During acute viremia, A3G mRNA increased in parallel

with MxA, a prototype interferon-stimulated gene indicating a common regulation by the initial interferon

response. This association disappeared during the asymptomatic stage.

Conclusion: Our findings suggest a protective effect of APOBEC3 for HIV and SIV in vivo and indicate regulation of

APOBEC3 by interferon during early infection and by contribution of other, hitherto undefined factors at later

disease stages. Elucidating the regulatory mechanisms leading to increased APOBEC3 mRNA levels in LTNPs could

help to develop new therapies against HIV.

Background

Infection with HIV leads to the development of severe

immunodeficiency in a widely variable time frame. A small

percentage of the HIV-infected individuals, the long term

non-progressors (LTNPs) even remain clinically healthy

without symptoms for over 15 years [1]. Those differences

are thought to result from the interaction of virus and

host factors influencing viral replication. Two recently

described innate host factors in humans, APOBEC3G

(hA3G) and APOBEC3F (hA3F), possess antiretroviral

activity and have been shown to restrict HIV-1 replication

in vitro [2-4]. In the absence of the HIV-1 accessory

protein Vif, hA3G and hA3F are incorporated into virus

particles and impair retroviral replication by introducing

G-to-A hypermutations in the viral genome [3,5,6]. How-

ever, Vif counteracts the activity of hA3G and hA3F and

prevents their encapsidation into virions by promoting

their proteasomal degradation via ubiquitination [7-9]. In

addition to the editing-mediated restriction by APOBEC3

deaminases, also other non-enzymatic inhibitory mechan-

isms have been described, some of which seem to be less

susceptible to inhibition by Vif [10,11]. Despite Vif expres-

sion, low levels of APOBEC3-mediated cytidine deamina-

tion are detectable, indicating that even wild-type HIV-1

can be restricted to some extent by the presence of APO-

BEC3 proteins [12,13]. Also, higher levels of A3G expres-

sion are able to overcome the effects of Vif [3,4,14],

suggesting that regulation of A3G expression may repre-

sent a novel target for antiretroviral therapy. In this regard,

several studies demonstrated regulation of APOBEC3 by

interferons or other immune mediators in vitro [15-22].

Several lines of evidence indicate that APOBEC3 may
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indeed have an impact on disease progression in HIV-

infected patients. First, a genetic variant of A3G was

reported that was associated with steeper CD4 T-cell

decline and faster disease progression in HIV-infected

African Americans [23]. Furthermore, APOBEC driven G-

to-A hypermutations in the viral genome occurring in vivo

during the early phase of HIV-1 infection also may have

an influence on disease progression by facilitating early

immune escape [24]. Finally, higher levels of A3G and

A3F were documented for HIV-1 infected individuals with

lower viral set points [25,26]. This finding however has

been challenged by other studies, which did not find a cor-

relation between hA3G and hA3F mRNA levels and viral

load [27].

Infection of macaques with simian immunodeficiency

viruses (SIV) is currently the best animal model to study

HIV infection and AIDS pathogenesis [28,29]. Although

experimental infection of rhesus macaques with SIV iso-

lates leads to disease and death in a shorter time-frame

compared with HIV infection, a similar variability in dis-

ease course with progressors and long term non progres-

sors (LTNP) has also been observed in SIV infection

[30,31]. Furthermore, it has been demonstrated that rhesus

APOBEC3 enzymes are also able to restrict SIV replication

[32] and that they are similarly degraded via Vif-dependent

mechanisms [33]. Taken together, the SIV rhesus macaque

model for AIDS provides the necessary components to

investigate the role of APOBEC3 for disease progression

under defined experimental settings. Therefore, we used

this model to determine A3G and A3F mRNA levels in

different cellular compartments. Levels of A3G and A3F

were correlated with viral load and disease progression. In

addition, we assessed a possible regulation of APOBEC3

through interferons in vivo by transcription analysis of

prototype interferon stimulated genes (ISGs).

Our results show significantly increased amounts of

A3G and A3F mRNA in SIV-infected asymptomatic maca-

ques with the highest APOBEC3 mRNA levels detected in

PBMC, purified CD4+ T-cells and CD14+ monocytes as

well as in peripheral lymph nodes of LTNPs. Furthermore,

we found an inverse correlation between APOBEC3

mRNA levels and viral load, suggesting a potential role of

APOBEC3 in reducing the viral load. Hence, our data in

the SIV rhesus macaque model strongly suggest a protec-

tive effect of APOBEC3 in the pathogenesis of AIDS. In

addition, we found evidence for a differential regulation of

APOBEC3 transcription in distinct disease stages.

Results

Increased APOBEC3 mRNA levels in asymptomatic SIV-

infected rhesus macaques

In order to study the impact of SIV infection on the

APOBEC3 transcription, we determined A3G and A3F

mRNA levels in 12 uninfected and 53 SIV-infected rhesus

macaques. Infected animals were grouped according to

their clinical stage. Twenty-nine macaques investigated

during the chronic disease stage were clinically asympto-

matic, whereas 24 macaques displayed signs of AIDS.

Our results show significantly increased levels of A3G

and A3F mRNA in peripheral blood mononuclear cells

(PBMC) of asymptomatic SIV-infected animals compared

with uninfected macaques and animals with AIDS (Figure

1A and 1B). In macaques with AIDS however, A3G and

A3F mRNA levels were not significantly different from

uninfected controls (Figure 1A and 1B). To further study

APOBEC3 levels in potential target cells, we purified CD4

+ T-cells and CD14+ monocytes with magnetic beads

from PBMC of a subset of animals. Compared with unin-

fected macaques, significantly increased A3F mRNA

levels were found in CD4+ T-cells of SIV-infected asymp-

tomatic animals (Figure 1D). Some asymptomatic SIV-

infected animals also showed high A3G mRNA levels

compared with uninfected controls, without reaching sig-

nificance (Figure 1C). Similar to PBMC and CD4+

T-cells, A3G and A3F mRNA levels in CD14+ monocytes

were elevated in SIV-infected asymptomatic animals

compared with uninfected macaques (Figure 1E and 1F).

This cell type could not be investigated in animals with

AIDS due to insufficient material. As a representative site

of major virus replication, we further quantified A3G and

A3F mRNA levels in peripheral and mesenteric lymph

nodes. Asymptomatic SIV-infected macaques also

showed a similar tendency to higher APOBEC3 mRNA

levels compared with uninfected animals, which however

failed to reach significance after post hoc correction for

multiple comparisons (Figure 1G-J). However, contrast-

ing the results from PBMC, animals with AIDS showed

even higher A3G mRNA levels in peripheral (Figure 1G)

and mesenteric lymph nodes (Figure 1I). Similar results

were obtained for A3F mRNA in mesenteric lymph nodes

of AIDS animals (Figure 1J).

Negative correlation of A3G and A3F mRNA with viral

load and disease progression

The high variation of APOBEC3 levels in SIV-infected

asymptomatic animals prompted us to look into a possi-

ble association with disease progression. Plasma viral

load represents the most common early predictor for dis-

ease progression in HIV-infected patients [34,35]. A com-

parable relationship between plasma viral load and SIV

infection has also been described in SIV-infected rhesus

monkeys [36]. Therefore, we correlated A3G and A3F

mRNA levels with plasma viral load. Our results showed

negative correlations between plasma viral load and A3G

and A3F mRNA levels in both total PBMC and purified

CD4+ T-cells (Figure 2A-D), which however was not sig-

nificant for A3G in the PBMC (Figure 2A). For the per-

ipheral lymph nodes, a negative correlation between A3G
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Figure 1 APOBEC3 mRNA levels in uninfected and SIV-infected macaques. A3G (left panels) and A3F (right panels) mRNA levels were

determined in uninfected (triangles) and SIV-infected animals with (diamonds) or without (circles) AIDS symptoms. Relative APOBEC3 mRNA

levels are shown in copy numbers per 100 copies of GAPDH in PBMC (A, B), CD4+ T-cells (C, D), CD14+ monocytes (E, F), lymphocytes from

peripheral (G, H) and mesenteric lymph nodes (I, J). Each data point represents one individual animal. Horizontal lines within the clusters are

depicting the median. Group comparisons were calculated using either the Kruskal-Wallis test with Dunn’s multiple comparison analysis for

PBMC, CD4+ T-cells and peripheral lymph nodes or the Mann-Whitney test for CD14+ monocytes (*p < 0.05; **p < 0.001). nd, not determined;

asymp., asymptomatic.
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Figure 2 Relationship of APOBEC3 mRNA levels and plasma viral load. A3G (left panels) or A3F (right panels) mRNA levels were correlated
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and peripheral lymph nodes (E, F). Viral load is depicted as log-transformed RNA copies per millilitre (ml) plasma. r, Spearman’s correlation

coefficient; line shows nonlinear regression; p, P value; ns, not significant.
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and A3F mRNA levels and viral load was seen after

exclusion of symptomatic animals with AIDS (Figure 2E

and 2F). At necropsy sufficient material was available to

directly determine cell associated viral load in lymphoid

tissue, correlating well with viral RNA levels in plasma

(additional file 1). Cell associated viral load in lymph

node cells was inversely correlated with local A3G

mRNA levels (additional file 1).

This negative correlation between A3G and A3F expres-

sion and viral load found in PBMC, CD4+ T-cells and

peripheral lymph nodes suggests an association between

APOBEC3 expression and disease progression. Therefore,

we divided the SIV-infected asymptomatic macaques into

distinct groups according to their survival time, i ) Pro-

gressors with a viral load above 104 copies per ml plasma

being asymptomatic without immunodeficiency when

investigated, but featuring a progressive disease course to

AIDS within three years post infection, and ii ) LTNPs

representing asymptomatic animals, that had survived for

more than three years post infection in the absence of any

signs of immunodeficiency with a viral load below 104

copies per ml plasma when analysed. Our data demon-

strate significantly higher amounts of A3G and A3F in

PBMC (Figure 3A and 3B), CD4+ T-cells (Figure 3C and

3D) and in peripheral lymph node cells (Figure 3G and

3H) of LTNPs compared with progressor macaques. For

CD14+ monocytes, the difference in the APOBEC3

mRNA expression between LTNPs and progressors

was only significant for A3F (Figure 3F), but not for A3G

(Figure 3E). From a limited number of animals, we had

sufficient material to perform Western blot analysis of

A3G protein. Compared with uninfected control animals,

A3G expression in PBMC was strongly increased in LTNP

(additional file 2). Unfortunately, available antibodies

showed no cross-reactivity with rhesus monkey A3F.

Taken together, the negative correlation between APO-

BEC3 levels and viral load as well as the high APOBEC3

levels found in LTNPs, suggest a positive influence of

APOBEC3 on the disease course.

Positive correlation of ISG mRNA levels with viral load

and disease course

The increased expression of APOBEC3 in all cell types

investigated in asymptomatic animals, suggests a regula-

tion by infection specific factors. This is corroborated by a

coordinated expression of A3G and A3F, which was

observed in PBMC (p = 0.02), CD4+ T-cells (p = 0.02),

peripheral lymph nodes (p = 0.003) in SIV-infected maca-

ques. Possible candidates for this effect are interferons, as

they play an important role during viral infections. In addi-

tion, IFN-a has been shown to induce A3G expression in

human leukocytes through interferon response elements

(ISRE) in the A3G promotor [15,37]. Similarly, we

observed an IFN-a-induced, dose dependent increase of

A3G and A3F transcription in simian PBMC in vitro (data

not shown).

In order to investigate a potential influence of interfer-

ons on A3G and A3F levels in vivo, we quantified tran-

scription levels of two ISGs, MxA (myxovirus resistance 1)

and IP-10/CXCL10 (interferon-induced protein 10 kDa) as

they represent conventionally used surrogate markers for

interferon-mediated effects. Similar to A3G and A3F, we

found a significant increase in the MxA and IP-10 mRNA

levels in the PBMC of asymptomatic SIV-infected maca-

ques compared with uninfected animals. In macaques with

AIDS, MxA transcription levels were even higher than in

asymptomatic monkeys, although not reaching signifi-

cance (Figure 4A). IP-10 levels of all infected animals also

remained above those of uninfected macaques (Figure 4B).

This is in contrast to the results for A3G and A3F, where

transcription rates in PBMC were comparable between

animals with AIDS and uninfected controls (Figure 1A

and 1B). MxA- and IP-10-expression in SIV-infected ani-

mals was also elevated in CD4+ T-cells, CD14+ monocytes

and in both types of lymph nodes (data not shown). In

contrast to expression levels of A3G and A3F, which nega-

tively correlated with viral load, we found a positive corre-

lation between MxA or IP-10 mRNA levels and viral load.

Such an association was seen for both ISGs in PBMC

(Figure 4C and 4D), in CD4+ T-cells and in peripheral as

well as mesenteric lymph node cells, but only for MxA in

CD14+ monocytes (data not shown). By dissecting MxA

and IP-10 transcription of chronically infected rhesus

monkeys into those of progressors and LTNPs, we

observed lower mRNA levels of both ISGs in PBMC

(Figure 5A and 5B) and lower MxA levels in CD4+ T-cells

(Figure 5C) of LTNPs. Regarding the IP-10 mRNA levels

in the CD4+ T-cells, there was no significant difference

between progressors and LTNPs (Figure 5D). This was

also true for the ISGs mRNA levels in CD14+ monocytes

and in peripheral lymph nodes (Figure 5E-H).

These results, however, contrast the high A3G and

A3F mRNA levels found in LTNPs (Figure 3). Together

with the opposite correlations between plasma viral load

and APOBEC3 and ISGs mRNA levels respectively, this

may indicate a different regulation of A3G and A3F

than the prototype ISGs during asymptomatic phase.

A3G and MxA expression are increased during early SIV-

infection

Our results from the cross-sectional study suggest an

induction of A3G and A3F during the asymptomatic

phase of infection. Therefore, we followed the time

course of A3G and MxA levels during early infection.

Seven animals were inoculated with different doses of

SIV as part of an in vivo titration study. All macaques,

except one of those inoculated with the lowest dose,

became infected and showed a typical course of plasma
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Figure 3 APOBEC3 mRNA levels in SIV-infected animals with different disease progression. A3G (left panels) and A3F (right panels) mRNA

levels were determined in SIV-infected progressors (open circles) or LTNPs (squares). Relative APOBEC3 mRNA levels are shown in copy numbers
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calculated using the Mann-Whitney test (*p < 0.05).
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viral load (Figure 6A). As shown previously, the inocula-

tion dose did not influence viral replication kinetics

in vivo [38]. This experiment was terminated early after

infection and animals were euthanized at predetermined

time points between six and 30 weeks post infection

without signs of AIDS. Figure 6 shows the kinetics of

A3G (B) and MxA transcription (C) for PBMC in these

macaques normalized to the mean of three independently

measured preinfection values. The inoculated macaque

that remained uninfected served as control. Starting one

week after infection, we observed a simultaneous increase

of A3G and MxA transcripts in PBMC compared with

preinfection values, which reached a maximum at ten

days post infection (Figure 6B and 6C). This was shortly

before peak viremia, which occurred at two weeks after

infection (Figure 6A). These variations were not seen in

the single animal that remained uninfected after inocula-

tion. After a nadir at two weeks post infection, the MxA

mRNA levels slightly increased again and remained sig-

nificantly elevated above preinfection values (Figure 6C).

Similarly, A3G mRNA decreased at two weeks post infec-

tion to levels only marginally above baseline, with a ten-

dency to a slow increase thereafter (Figure 6B). Due to

the limited number of animals, this rise, however, did not

reach significance in the observation period of this

experiment.

For some of the animals, it was also possible to quantify

A3G and MxA mRNA at certain time points after SIV

infection (either ten days or two weeks and six or 12

weeks post infection) in peripheral lymph nodes. By

including available preinfection data from some of the ani-

mals, it was possible to illustrate a kinetic for the periph-

eral lymph nodes as well (Figure 6D and 6E). Similar to

PBMC, we found significantly increased mRNA levels of

A3G and MxA during the acute phase, at ten days post

SIV infection. Later in the early asymptomatic phase, six
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to 12 weeks post SIV infection A3G and MxA mRNA

levels were reduced to almost normal levels (Figure 6D

and 6E).

Disease stage specific regulation of APOBEC3 expression

in vivo

The parallel kinetics of A3G and MxA expression suggest

common regulatory mechanisms for both genes at early

stages of infection. Indeed A3G and MxA transcription

was directly correlated in both PBMC and peripheral

lymph nodes during the acute phase (ten to 14 days post

infection) (Figure 7A and 7D). This contrasts the results

at later time points (12 to >156 weeks post infection) in

asymptomatic SIV-infected macaques, showing no or

even a negative correlation between MxA and A3G

mRNA level in PBMC and peripheral lymph nodes

(Figure 7B and 7E) or CD4+ T-cells (p = 0.132). Such

negative relationship was also found between IP-10 and

A3G in PBMC in the asymptomatic phase (p = 0.04).

Similar results were seen when comparing A3F with ISGs
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in all cell types investigated from asymptomatic animals

(data not shown). Interestingly in macaques with signs of

AIDS, levels of MxA and A3G (Figure 7C and 7F) or A3F

were again positively correlated in PBMC (p = 0.028) and

peripheral lymph nodes (p = 0.038). Such positive corre-

lations were also observed between IP-10 and A3G (p =

0.012 PBMC; p < 0.0001 peripheral lymph nodes) or A3F

(p = 0.04 PBMC; p = 0.044 peripheral lymph nodes) at

the time of necropsy.

These data suggest that several factors are involved in

the regulation of A3G and A3F during SIV infection.

The relative contribution of these different mechanisms

seems to vary with the stage of infection.

Discussion

Members of the APOBEC family of deaminases, such as

A3G and A3F, have been described as potent retrovirus

restriction factors, capable of inhibiting replication of

several viruses including HIV-1 in vitro [4,39-41]. In

rodents, it has been clearly demonstrated that APOBEC3

contributes to restriction of Friend MuLV infection in

vivo [42,43]. The role of APOBEC3 in the pathogenesis

of AIDS, however, is still under debate [24,25,27,44,45].

Therefore, we determined A3G and A3F transcription in

SIV-infected rhesus macaques and linked it to plasma

viral load and disease progression.

Compared with uninfected control animals, we found

increased mRNA levels of both A3G and A3F in SIV-

infected monkeys during the asymptomatic phase of the

disease. So far, several studies have investigated A3G

transcription in HIV-infected subjects, however with

inconsistent results [25-27,44,46,47]. Whereas some

reported increased levels of A3G in HIV-infected subjects

[25,44], others found lower A3G mRNA compared with

uninfected individuals [27,47]. In the few studies on A3F,

similarly discrepant results were observed [25,27]. Some

of the inconsistencies might be attributed to methodolo-

gical differences as both fresh and cryopreserved cells

with or without polyclonal stimulation were used. How-

ever, the wide variation between infected individuals, also
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seen in our study, suggests that the most important

source of the conflicting data is likely differences in the

selection of patients with regard to disease stage and viral

load. In the present study, animals that had progressed to

AIDS had lower A3G and A3F levels in blood than

asymptomatic macaques. Although an association

between disease stage in humans and APOBEC3 tran-

scription has not been investigated explicitly, this is cor-

roborated by recent findings of very low A3G mRNA

levels in patients with CD4 counts below 200 [26]. On

the other extreme, as reported for HIV-patients [46], we

observed the highest mRNA levels among asymptomatic

animals in a group of LTNPs, representing animals that

had survived for more than three years after infection.

This association between APOBEC3 mRNA and disease

progression is substantiated by our finding of a negative

correlation between APOBEC3 levels and plasma viral

load. These results are in agreement with several previous

reports, which documented higher A3G [25,26,46] and

A3F [25] mRNA levels in PBMC of patients with lower

viral load. By contrast, another study did not find a corre-

lation between APOBEC3 mRNA and viral load [27]. As

observed previously [26], APOBEC3 mRNA copies in

individuals with high viral load were often below the

levels of uninfected controls. These findings may explain

the decreased A3G levels in PBMC of infected compared

with uninfected individuals reported by some studies,

probably due to differences in the composition of the

patient groups.

Our study is the first one, which quantified APOBEC3

mRNA in the context of an immunodeficiency virus

infection not only in whole PBMC, but also in leukocyte

subsets susceptible to infection such as CD4+ T-cells and

CD14+ monocytes as well as in the lymph nodes as

major virus replication sites. Despite slight variations, the

same tendencies were observed. A3G and A3F mRNA

levels correlated negatively with viral load and the highest

values were observed in LTNPs. Interestingly, the dichot-

omy in A3G transcription of individuals with higher or

with lower A3G levels than uninfected controls was more

pronounced in CD4+ T-cells possibly due to differences

in the cellular composition. In general, mRNA levels

determined in PBMC mirrored the situation in CD4+

T-cells or monocytes. However, this does not reflect the

conditions in lymph nodes. In lymph nodes from two dif-

ferent anatomical regions, we also detected high amounts

of A3G and A3F mRNA in LTNPs. In contrast to blood

however, APOBEC3 levels in lymph nodes were still

increased in animals with AIDS. This might be explained

by the fact that AIDS-associated immunological altera-

tions occur later in lymphatic tissues than in blood

[48,49]. Since we sacrificed the animals when first signs

of AIDS appeared, the situation in lymph nodes may still

be more similar to the asymptomatic phase. Also

differences in the cellular composition or in the microen-

vironment between the different compartments [50]

could be responsible as APOBEC3 transcription varies

between different cell types and tissues [21,51,52] and

can be influenced by interferons, cytokines and chemo-

kines [17,19,20,22,37,51]. To our knowledge, APOBEC3

mRNA in lymph nodes of HIV-patients has yet not been

studied to substantiate our results with findings from the

human setting.

Our data clearly demonstrate a negative correlation of

A3G and A3F mRNA levels with viral load and an asso-

ciation of high A3G and A3F mRNA levels with pro-

longed survival, suggesting a possible effect of APOBEC3

on viral replication in vivo favorably influencing disease

progression. It has been hypothesized, that the higher

A3G levels in LTNPs or patients with low viral load are

due to preexisting differences in gene expression [45].

However, our longitudinal studies suggest that A3G tran-

scription is actually up-regulated after infection. This is

in line with the results of a recent publication where

A3G transcription was compared in the same individuals

before and after infection [25]. In addition, we found

coordinated transcription of A3G and A3F in all cell

populations investigated only in SIV-infected animals,

which points to common regulatory mechanisms induced

by the infection. Interestingly, increased A3G levels have

also been reported in patients with HCV-infection [53].

General to viral infections is a potent induction of type

one interferons and several studies have demonstrated

stimulation of A3G and A3F expression by interferons

in vitro [15,37,54,55]. Therefore, we have determined the

transcription of conventionally used prototype inter-

feron-stimulated genes to assess interferon activity in our

animals. As reported previously for both HIV-infected

humans and SIV-infected macaques [56-58], we observed

an early and strong rise of MxA mRNA, which reached

its maximum ten days after infection, hence preceding

peak viral load. This up-regulation of ISG was paralleled

by a more moderate increase in A3G mRNA levels. With

resolution of peak viremia both MxA and A3G levels

declined but remained slightly above preinfection levels

in both PBMC and lymph node cells. These parallel

kinetics indicate that APOBEC3 deaminases are down-

stream effector molecules of a type I interferon response

in acute viral infections. In the chronic phase of SIV-

infection, however, we found a divergent expression of

prototype ISG and A3G/A3F. Whereas MxA and IP-10

transcription increased with higher viral replication, A3G

and A3F mRNA levels were negatively correlated with

plasma viral load in SIV-infected asymptomatic animals.

Thus, other mechanisms must be responsible for the

higher APOBEC3 levels found in asymptomatic animals,

especially in LTNPs. As acute phase and end stage

disease are characterized by a lack of virus specific
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immunity and LTNPs show a better specific immune

response than progressors [59], mediators associated

with a potent immune reaction are likely candidates for

this additional APOBEC3 modulation in asymptomatic

animals. Cytokines like IL-2 and IL-15 have been shown

to induce A3G expression in vitro [19,22], PBMC from

LTNPs produce higher amounts of IL-2 [60] and adju-

vanting vaccine vectors with IL-15 improves protection

against pathogenic challenge in the SIV/macaque model,

partly through an induction of A3G [22]. In this context

it would be interesting to explore the effect of HAART

on APOBEC3 levels as effective antiretroviral treatment

has been shown to restore IL-2 production by antigen

specific cells [61] and IL-15 levels correlated with better

outcome of structured treatment interruption [62]. In

addition, it has been reported that cross-talk between

dendritic cells and T-cells also results in the induction of

A3G expression by both contact dependant mechanisms

via CD40-CD40L interaction and through soluble media-

tors such as IL-15 [17]. Dendritic cells are depleted in

progressive HIV-infection [63], but accumulate in lymph

nodes of LTNPs exhibiting elevated CD40 expression

[64]. Increased signaling through CD40 ligand may thus

be responsible for the higher A3G expression in the

asymptomatic phase. Consistent with the reported loss of

CD40 expressing dendritic cells in AIDS patients [64],

this regulatory pathway attenuates leading to the lower

APOBEC3 transcription, which we observed in PBMC of

animals with symptoms of AIDS. At this stage of the

infection, A3G and A3F mRNA levels once again seem to

be governed solely by interferons as they correlated with

the transcription of ISGs.

An alternative explanation for the disease stage specific

relationship between APOBEC3 and ISG expression could

be shifts in the composition of cells. Some groups have

reported a stronger induction of A3G and A3F transcrip-

tion by IFN-alpha for macrophages compared with CD4+

T-cells [21,51,55] and for resting compared with activated

CD4+ T-cells [15]. However, as we see the same disease

stage specific pattern for all cell types investigated, such

differences in sensitivity to interferon stimulation probably

do not contribute to the discrepancy between APOBEC3

and ISG transcription in asymptomatic animals.

In summary, we think that increased amounts of inter-

ferons in SIV-infected macaques influence APOBEC3

mRNA levels throughout the infection. However, as evi-

denced by the much lower induction of A3G during peak

viremia compared with prototype ISG, the effect of inter-

ferons on the transcriptional control of APOBEC3 dea-

minases in vivo is moderate. This interferon-mediated

basic regulation is then overlaid by additional modulatory

mechanisms, which need time to build up and are stron-

gest in LTNPs, but ultimately vanish during AIDS. Such

mechanisms may also potentially become activated in

uninfected individuals as various vaccination regimens

can induce a long lasting upregulation of A3G in maca-

ques [22,65]. In addition, several studies have documen-

ted increased A3G mRNA levels in HIV-1 exposed but

seronegative individuals [26,44], who are known to

mount a subtle HIV-specific cellular immune response

[66]. Interestingly, cessation of exposure was associated

with both decreased A3G levels [26] and with a loss of

anti-HIV-1 T-cell response [67]. Exploring the mechan-

isms leading to increased APOBEC3 levels in LTNPs or

HIV-1 exposed but seronegative individuals should pro-

vide useful information for new therapeutic approaches.

The results from this and previous studies suggest that

increased APOBEC3 mRNA levels are associated with

lower viral load and slower disease progression. According

to our data, A3G and A3F mRNA levels are increased also

in CD4+ lymphocytes and CD14+ monocytes, the cellular

targets of HIV, and in lymph nodes where the majority of

CD4+ T-cells resides and where abundant viral replication

takes place. Information on other tissues with high viral

load such as mucosa associated lymphoid tissue is sparse.

So far, only cervical biopsies have been investigated where

A3G levels were comparable between infected and unin-

fected individuals [44].

Evidence that APOBEC3 actually exerts its deaminase

activity in vivo is derived from studies, which found the

typical G to A mutations imprinted on the viral genomes

in HIV-infected patients [12,26,68]. The extent of these

characteristic mutations correlated with A3G transcription

[26], indicating that increased APOBEC3 expression may

overcome the restraints imposed by Vif [2]. Moreover,

higher hypermutation rates conforming to the A3G and

A3F sequence preferences were associated with lower viral

load and higher CD4 cell counts [12,68]. On the other

hand, increased A3G/A3F expression may be beneficial

even without demonstrable hypermutations as APOBEC3

enzymes can restrict viral replication through mechanism

distinct from cytidine deamination [10,11,69].

Conclusions

By demonstrating an association between increased A3G

and A3F mRNA levels with prolonged survival in the

defined experimental setting of an animal model, we pro-

vide further evidence for a potential protective role of

APOBEC3 in the pathogenesis of HIV-infection. Depend-

ing on the stage of the infection, several mechanisms seem

to contribute to the up-regulation of APOBEC3 transcrip-

tion in vivo. We postulate that A3G is regulated in vivo by

type I interferons, an effect which appears to dominate in

the acute and AIDS phases. In addition, there are other

regulatory mechanisms, most strongly present in LTNP,

which govern APOBEC regulation in the asymptomatic
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stage. Future investigations to elucidate the regulatory

mechanism may help to exploit these intrinsic antiretro-

viral factors for anti-HIV therapy and vaccination.

Materials and methods

Animals

Rhesus macaques (Macaca mulatta) of Indian origin were

housed at the German Primate Centre under standard

conditions according to the German animal protection

law which complies with the European Union guidelines

on the use of non-human primates for biomedical

research. Animals were infected either via the tonsils with

SIVmac239 [70] or intravenously with a SIVmac251-

derived virus stock [71], both prepared in rhesus monkey

peripheral blood mononuclear cells. Sampling of blood

was carried out under ketamine anesthesia. For sampling

of lymph nodes, the animals were anesthetized with a mix-

ture of 5 mg ketaminhydrochloride, 1 mg xylazinhy-

drochloride and 0.01 mg atropine sulfate per kg body

weight. Mesenteric lymph nodes were obtained on the day

of necropsy.

In a cross-sectional study, 53 infected animals were

grouped according to their clinical stage. Twenty-nine

macaques, which were clinically asymptomatic, were

investigated during the chronic phase of the infection.

Some of these were sacrificed according to the experimen-

tal schedule without signs of AIDS. 24 macaques were

euthanized when first signs of AIDS appeared, i.e. anor-

exia, incurable diarrhoea, Pneumocystis jirovecii infection

or neurological dysfunction as judged from clinical as well

as necropsy and histopathological findings, which were

available for each macaque (additional file 3).

Blood and/or lymph node samples were obtained at dif-

ferent time points after infection ranging from 12 to >156

weeks post infection (wpi) for SIV-infected asymptomatic

macaques (median 62 wpi) and 22 to 138 wpi for animals

with AIDS (median 80 wpi). Ten of the asymptomatic ani-

mals survived with a set point viremia of below 104 RNA

copies/ml plasma for more than three years and were thus

regarded as LTNP. The remaining asymptomatic animals

had viral loads above 104 RNA copies/ml plasma at

the time of investigation and later showed a progressive

disease course leading to AIDS within three years of

infection.

Equal numbers of animals had been infected with SIV-

mac239 or SIVmac251 and mRNA levels of A3G, A3F,

MxA and IP-10 were not influenced by the infecting virus

strain. 12 uninfected clinically healthy rhesus macaques

were used as negative control group.

In a longitudinal study, two animals were inoculated

intravenously with 100 TCID50, three animals with 10

TCID50 and two animals with 1 TCID50 of SIVmac251 as

part of an in vivo titration experiment aimed at defining

the in vivo infective dose of a new monkey PBMC-derived

virus stock. This SIVmac251 challenge virus was prepared

on PHA-stimulated PBMC from several monkeys using

SIVmac251 [71] as inoculum. Supernatants were harvested

and pooled. After filtration, aliquots were prepared and

stored at -140C and the TCID50 was determined on

C8166 cells.

Lymphocyte isolation

Peripheral blood was collected by venipuncture and per-

ipheral blood mononuclear cells (PBMC) were isolated via

ficoll-paque gradient centrifugation (lymphocyte separa-

tion medium, PAA laboratories, Pasching, Austria). PBMC

were washed with phosphate-buffered saline (PBS). CD4+

T-cells and CD14+ monocytes were enriched from fresh

PBMC by positive selection using magnetic beads (Milte-

nyi Biotec, Bergisch-Gladbach, Germany) and monoclonal

antibodies to either CD4 or CD14. The purity of the iso-

lated CD4+ T-cells and CD14+ monocytes were analyzed

by flow cytometry on a LSR II flow cytometer (Becton

Dickinson, Heidelberg, Germany) with the following fluor-

escence conjugated antibodies: anti-CD3 Alexa 700 (BD

Biosciences); anti-CD4 Alexa 405 (BD Biosciences), anti-

CD14 PerCP Cy5.5 (BD Biosciences), anti-CD20 PECy 7

(BD Biosciences) and anti-CD45 FITC (Mitenyi Biotec).

Only CD4+ T-cells and CD14+ monocytes with purity

above 90% were used for downstream applications. Tissue

cell suspensions from lymph nodes were prepared by

dissecting the lymph nodes with scalpels and forceps

in RPMI 1640 (PAN Biotech, Aidenbach, Germany) sup-

plemented with 10% FCS (PAN Biotech, Aidenbach,

Germany), 100 U/ml penicillin (PAN Biotech, Aidenbach,

Germany) and 100 μg/ml streptomycin (PAN Biotech,

Aidenbach, Germany) (complete RPMI) and passing the

homogenate through a cell strainer (100 μm nylon; BD

Biosciences, Heidelberg, Germany). Separated cells were

washed twice in PBS and living cells were counted by try-

pan blue exclusion.

RNA isolation and cDNA synthesis

Total cellular RNA was isolated from 2 × 106 to 5 × 106

cells with the RNeasy Plus Mini Kit (Qiagen, Hilden,

Germany), according to the manufacturer’s instructions.

Purified RNA was quantified by measuring the optical

density at 260 nm (OD260). All samples had an OD260/

OD280 ratio of 1.9 or greater. The quality of the isolated

RNA was randomly checked by Agilent 2100 Bioanalyzer

(Agilent Technologies, Böblingen, Germany) featuring

RIN values (RNA Integrity Number) of at least 8.0. Synth-

esis of cDNA was carried out with random hexamer pri-

mers and SuperScript III First-Strand Synthesis System for

RT-PCR kit (Invitrogen GmbH, Karlsruhe, Germany),

according to the manufacturer’s protocol.
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Quantification of A3F, A3G, MxA and IP-10/CXCL10 mRNA

We established a real-time PCR assay to quantify A3G,

A3F, MxA and IP-10/CXCL10 mRNA levels in lympho-

cytes/leukocytes using SYBR Green (Qiagen, Hilden,

Germany) chemistry with primers designed to uniquely

amplify A3G (Genbank accession number AY331716), A3F

(Genbank accession number NM_001042373), MxA

(Genbank accession number EF101561) and IP-10/

CXCL10 (Genbank accession number AY044446). The fol-

lowing primers (Sigma, Hamburg, Germany) were used:

A3G forward, 5’-TCTACGCAACCAGGCTCCA-3’ (nt 702

to 720); A3G reverse 5’-GGAATCAGGTCCAGGAAGCA-3’

(nt 779 to 760); A3F forward, 5’-CAGTAATGTGAAGCT

CGCCATC-3’ (nucleotides [nt] 882 to 903); A3F reverse,

5’-TGCTGGTAATGTGTATCCCAGAA-3’ (nt 947 to 925);

MxA forward, 5’-AGGAGTTGCCCTTCCCAGA-3’ (nt 295

to 313); MxA reverse, 5’-TCGTTCACAAGTTTCTTCAG

TTTCA-3’ (nt 372 to 348); IP-10/CXCL10 forward, 5’-

GATTTGCTGCCTTGTCTTTCTGA-3’ (nt 21 to 43); IP-10/

CXCL10 reverse, 5’-CAGGTACAGCGTACAGTTCTTGAGA-

3’ (nt 95 to 71). Primers were selected in less conserved

regions to limit sequence homologies with other APOBEC3

genes. Later, significant homology was detected in the A3F

primer region with A3D, a sequence which was not avail-

able at the beginning of the study. Sequences for the MxA

primers were taken from Abel et al. [72]. Glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) (Genbank accession

number XM_001105471) was used as a house keeping gene

with the following primers taken from Rodriguez-Jimenez

et al. forward, 5’-CCTGCACCACCAACTGCTTA-3’(nt 525

to 544); reverse, 5’-CATGAGTCCTTCCACGATACCA-3’

(nt 598 to 577) [73]. The reactions were performed in

Micro Amp optical tubes or plates (Applied Biosystems

GmbH, Darmstadt). Each 25 μl reaction mixture contained

12.5 μl 2 × QuantiTect SYBR Green PCR master mix (Qia-

gen, Hilden, Germany), 1 μl of each 10 μM primer, and 2 μl

cDNA products. The reactions were run in an ABI Prism

7500 with one cycle at 95°C (15 min) followed by 40 cycles

at 95°C (15 s) and 55°C (1 min). Validation experiments

were performed to determine the specificity and efficiency

of the primers to selectively amplify the target gene. Melt-

ing curves and agarose gel documentation demonstrated

the existence of a single product (additional file 4). The cal-

culated efficiency for all primers, determined by dilution

experiments, was from 97% to 99 %, thus target sequences

were amplified with similar efficiencies. All samples were

run at least in duplicates. The results were analyzed by

Sequence Detection Software (Applied Biosystems GmbH,

Darmstadt), and A3F, A3G, MxA and IP-10/CXCL10

mRNA levels were calculated as copy numbers relative to

100 copies of GAPDH.

Western blot for APOBEC3G protein

PBMCs were lysed with ice-cold buffer containing 50

mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

(HEPES), pH 7.4, 150 mM NaCl, 0.1% octyl phenoxylpo-

lyethoxylethanol (Nonidet-P40), 0.5 mM phenylmetha-

nesulfonylfluoride (PMSF), 1% protease inhibitor

cocktail (Sigma, Hamburg, Germany). Proteins were

quantified by a bicinchoninic acid protein assay reagent

kit (Pierce, Rockford, USA). An equal amount of protein

(20 μg) from different animal samples was loaded in

individual lanes of a 12% SDS-polyacrylamide gel. After

electrophoretic separation, the proteins were transferred

to nitrocellulose membrane (Schleicher & Schuell

Bioscience, UK). Membranes were blocked with 5% milk

powder phosphate-buffered saline with 0.1% Tween-20

and probed with monoclonal anti-APOBEC3G at 1:1000

(Immunodiagnostics, Woburn, MA, USA) at 4°C over-

night. Membranes were washed with phosphate-buffered

saline with 0.1% Tween-20 three times for 5 minutes

and incubated for one hour with secondary antibody

conjugated with horseradish proxidase (Jackson Immu-

noResearch, Suffolk, UK) and detected by chemilumi-

nescence (Super Signal West Pico Chemoluminescence

Kit Pierce, Rockford, USA).

Quantification of Plasma viral RNA and cell associated

viral load

Isolation of viral RNA was performed from plasma samples

according to the MagAttract Virus Mini M48 protocol

(Qiagen, Hilden, Germany). Purified SIV RNA was quanti-

fied with TaqMan-based real-time PCR on an ABI-Prism

7500 sequence detection system (Applied Biosystems

GmbH, Darmstadt) as described [74]. Amplified viral RNA

was calculated as SIV-RNA copies per millilitre plasma.

Cell associated viral loads in organs were determined

by limiting dilution coculture of monkey PBMC and the

permanent T-cell C8166 as indicator cells, which were

adhered to concanavalin A-coated microtiter plates.

Viral replication in cultures was visualized by immuno-

peroxidase staining of intracellular antigen [50].

Statistics

The statistical analyses were calculated with GraphPad

Prism version 5 (GraphPad software). For interpretation

between more than two groups the Kruskal-Wallis test

with Dunn’s multiple comparison analysis was used and

for comparison between two groups the nonparametric

two tailed Mann-Whitney’s U test were used. For corre-

lation the nonparametric two tailed Spearman test was

performed. Significance level was always set at p-values

less than 0.05.

Additional material

Additional file 1: Correlation of cell associated viral load in LN with

plasma viral load and LN A3G mRNA levels. Two figures depicting a

significant association between cell associatiated viral load in LNmes and

viral RNA levels in plasma and A3G mRNA levels in LNmes respectively.
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Additional file 2: Western blot of A3G protein. Western blot analysis

of PBMC shows higher levels of A3G protein in LTNP than uninfected

animals.

Additional file 3: Major clinical and pathological findings in animals

with AIDS. Table listing major clinical and pathological findings in

individual animals.

Additional file 4: Melting curves and gel electrophoresis of A3G and

A3F PCR products. Melting curves and gel documentation shows single

products of PCR reactions with A3G and A3F primers.
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