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Abstract

We here describe novel aspects of CD8+ and CD4+ T cell subset interactions that may be clinically relevant and provide new
tools for regulating the reconstitution of the peripheral CD8+ T cell pools in immune-deficient states. We show that the
reconstitution capacity of transferred isolated naı̈ve CD8+ T cells and their differentiation of effector functions is limited, but
both dramatically increase upon the co-transfer of CD4+ T cells. This helper effect is complex and determined by multiple
factors. It was directly correlated to the number of helper cells, required the continuous presence of the CD4+ T cells,
dependent on host antigen-presenting cells (APCs) expressing CD40 and on the formation of CD4/CD8/APC cell clusters. By
comparing the recovery of (CD44+CD62Lhigh) TCM and (CD44+CD62Llow) TEM CD8+ T cells, we found that the accumulation of
TCM and TEM subsets is differentially regulated. TCM-cell accumulation depended mainly on type I interferons, interleukin (IL)-6,
and IL-15, but was independent of CD4+ T-cell help. In contrast, TEM-cell expansion was mainly determined by CD4+ T-cell
help and dependent on the expression of IL-2Rb by CD8 cells, on IL-2 produced by CD4+ T-cells, on IL-15 and to a minor
extent on IL-6.
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Introduction

Clinical peripheral T cell lymphopenia is common following

infectious diseases, such as, HIV, or aggressive therapies for

neoplasia and autoimmune diseases. The capacity to recover

peripheral T cell numbers, which is a hallmark of T cell

homeostasis, raises interesting possibilities for the rehabilitation

of such immune-deficient states. Mature peripheral T cells, once

transferred into a lymphopenic environment, expand considerably

and can repopulate the peripheral T cell pool [1]. Such capacity

for lymphopenia driven proliferation (LDP) has been shown to be

dependent on both T cell receptor (TCR)-major histocompatibility

complex (MHC) interactions [2,3] and cytokines [4,5,6]. However,

though LDP is often considered to be a homeostatic response, it

may incapable of reconstituting the peripheral immune system

[1,7] as present in a normal individual. Different T cell clones

show divergent proliferation capacities [8]: therefore only a limited

fraction of the transferred cells expand [1] resulting in reducing T

cell repertoires [9]. Moreover, restoration of the peripheral T cell

pool modifies the functional ability of lymphocytes [7,10,11] and

in some cases may cause self-aggressive pathologies [9,12,13].

These observations imply that a full recovery of immune

competence is not necessarily achieved through the recovery of

cell numbers: to maintain immune responsiveness, discrete

lymphocytes subpopulations that confer different qualities to the

immune system must also be maintained [14] including naı̈ve

CD4+ and CD8+ T cells, memory CD8+TCM and CD8+TEM

subpopulations [15] CD4+ Tregs, and TH17 CD4+ effector T cells

[12,16,17,18]. In addition, T cell homeostasis and immune

responses are the result of a number of dynamic interactions

between different T cell populations and the environment and

amongst themselves [7,19]. For example, CD4+ and CD8+ T cells

are known to interact to generate CD8+ T cell memory during

immune responses and to confer protective functions to CD8+ T

cells during homeostatic proliferation [20]. The presence of CD4+

T cells greatly impacts the number and quality of CD8+

‘‘memory’’ T cells generated during immune responses either

directly through cell-contact dependent CD40-CD40L interac-

tions [21] or indirectly through third party populations like

dendritic cells (DCs) [22]. All these populations are expected to

coexist in physiological settings: thus, it is important to establish

how interactions occur between the co-expanding T cell

populations and how they contribute to the restoration of the

CD8+ T cell subpopulations following lymphopenia.

We investigated the cellular interactions that occur after adoptive

transfer of isolated T cell populations into T cell deficient hosts.
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Methods

Ethics Statement
Mice were cared for in accordance with Pasteur Institute guidelines

in compliance with European animal welfare regulations, and all

animal studies were approved by the Pasteur Institute Safety

Committee in accordance with French and European guidelines

and by the ethics Committee of Paris 1 (permits 2010-0002, 2010-

0003 and 2010-0004).

Mice
C57Bl/6.Ly5b and C57Bl/6.Ly5a mice were purchased from

Charles Rivers (France). B6.129-Lattm6Mal mice were derived by

Dr. B. Malissen [23]. B6.CCR52/2, B6.Rag22/2IL-152/2,

B6.IL-2Rb2/2 and B6.IFNAR2/2 were gifts from Drs. C.

Combadière, J. Di Santo, C. Surh, and M. Albert and the

B6.IL-152/2 mice were from Taconic Europe (Denmark). All

mice including B6.CD3e2/2, B6.Rag22/2, B6.CD402/2,

B6.Rag22/2CD402/2, B6.IL-22/2, B6.CD3e2/2IL-22/2,

B6.IL-62/2 and B6.Rag22/2IL-62/2 were kept in our animal

facilities.

Cell transfer
Lymph node (LN) cells from donor mice were enriched for

CD4+ or CD8+ T cells by Dynal MPC6 magnetic cell sorting

(Dynal, Oslo) or auto MACS (Miltenyi-Biotec, Bergisch Gladbach,

Germany). After selection .90% of the remaining population was

CD4+ or CD8+. These cells labeled with combinations of anti-

CD4 (L3T4/RM4-5), anti-CD45RB and anti-CD25 (7D4), or

anti-CD8, anti-CD44 and anti-CD62L antibodies were sorted

using a FacsAria (Becton Dickinson, San Jose, CA USA). The

purity of the sorted CD44+CD62L+CD8+, CD44+CD62L2

CD8+, CD442CD62L+CD8+, CD45RBhighCD252CD4+ and

CD45RBlowCD25+CD4+ populations was .96%. To estimate

cell division donor CD8+ T cells were labeled with carboxyfluor-

escein diacetate succinimidyl ester (CFSE) (Molecular Probes) as

previously described [24]. Immune-deficient hosts were intrave-

nously injected with purified LN CD4+ or CD8+ T cells alone or

mixed and sacrificed at varying time intervals thereafter. Spleen

and inguinal and mesenteric LN suspensions were prepared and

the number and phenotype of the cells evaluated. Mice with

different Ly5 allotypes allowed different donor cells to be

discriminated. The total peripheral T cells represented the number

of cells recovered in the host’s spleen plus twice the number of the

inguinal and mesenteric LN cells. To deplete Lat-DTR CD4+ T

cells, host mice received five intraperitoneal injections of 1 mg of

diphtheria toxin (DT) (List Biological Laboratories, Campbell, CA)

on alternating days.

Flow cytometry
The following monoclonal antibodies were used: anti-CD45.1,

anti-CD45.2, anti-CD3e (145-2C11), anti-CD4 (L3T4/RM4-5),

anti-CD8, anti-CD11c, anti-CD25 (7D4), anti-CD44 (IM7), anti

CD45RB (16A), anti-CD62L (MEL14), anti-CD69 (H1.2F3), anti-

TCRb (H57), anti-IFNc and anti-TNFa (MP6-XT22), from

Pharmingen (San Diego, CA, USA); anti-CD44 (IM781) and

anti-CD62L (MEL14) from Caltag (San Francisco, CA, USA); and

anti-CD25 from Southern Biotechnologies. CCR7 staining was

performed using the ELC.Fc fusion protein. Four/six color

staining used the appropriate combinations of FITC, PE, TRI-

color, PerCP, PECy7, biotin, APC, AlexaFluor647 and APCCy7-

coupled antibodies. Biotin-coupled antibodies were secondarily

labeled with APC-, TRI-Color- (Caltag, San Francisco, CA, USA),

PerCP- (Becton Dickinson, San Jose, CA, USA) or APCCy7-

coupled (Pharmingen) streptavidin. Dead cells were excluded

based on light-scattering. All data acquisition and analyses were

performed with a FACSCanto (Becton Dickinson, San Jose, CA

USA) interfaced with Macintosh CellQuest or FloJo software. To

estimate cell division in vivo, mice received two daily intraperi-

toneal injections of 1 mg 5-ethynyl-29-deoxyuridine (EdU) at 12-

hour interval for three consecutive days. EdU incorporation was

detected using a Click-iT EdU flow cytometry kit (Invitrogen). In

vivo cell death was detected by staining with Annexin V (BD

Biosciences).

Single-cell multiple parametric quantitative RT-PCR
RT-PCR was performed as previously described [25]. To

ensure that each well contained a T cell, CD3e mRNA was

amplified simultaneously with other genes. The mRNAs studied

were TGFb1 (Tgfb1), TNF-a (Tnf), IFNc (Ifng), Perforin (Perf),

Granzyme A (Gzma), Granzyme B (Gzmb), FasL (Fasl), CCR7

(Rccr7), IL-7R (Il7r), IL-10R (Il10r), IL-15R (Il15r), IL-21R (Il21r),

IL-2 (Il2), IL-15 (Il15), IL-21 (Il21), TGFbRI (Tgfbr1), TGFbRII

(Tgfbr2), TGFbRIII (Tgfbr3) and CD3e. These single-cell studies

revealed considerable cell-to-cell variation [25]. Results were

expressed as positive (mRNA detected) or negative (mRNA

absent).

Statistical analysis
Sample means were compared using the unpaired Students’ t

test. In cases of considerably sample variances, Welsh’s correction

was used. For linear regression analysis, the Spearman correlation

test was used. Sample means were considered significantly

different at P,0.05.

Results

CD4+ T cells modify CD8+ T cell LDP
CD8+ T cells are capable of considerable expansion after

transfer to T cell-deficient hosts: 4 to 8 weeks after the transfer of

26104 purified mature CD8+ T cells into CD3e2/2 mice we

recovered ,106 CD8+ T cells. However, upon the co-transfer of

CD4+ T cells, the CD8+ T cells expanded to about 10 to 30-fold

higher numbers (.107) revealing that CD4+ T cells play a major

role in promoting CD8+ T cell expansion (Figure 1A). This effect

was observed early after transfer and persisted throughout

peripheral reconstitution (Figure 1B). An evaluation of CD8+ T

cell division showed that, 4 days after transfer, the presence of

CD4+ T cells increased the fraction of CFSE-labeled CD8+ T cells

with more than 5–6 divisions (Figure S1). By 2 or 4 weeks the

CD8+ T cells co-transferred with CD4+ T cells contained a higher

fraction of EdU+ cells (Figure S1) demonstrating that help

improved cell division even at later time points. CD4+ T cell co-

transfer also reduced the percentage of Annexin V+ CD8+ T cells

(Figure S1). These results demonstrate that CD4+ T cells help in

the peripheral expansion of CD8+ T cells by enhancing

proliferation and reducing cell death.

Next we characterized the CD8+ T cell populations generated

in the absence or presence of CD4-help. In the absence of CD4+ T

cells, 75–80% of the recovered CD8+ T cells were CD62Lhigh,

and CD4-help lead to the accumulation of cells with a

CD62LlowCCR7low phenotype (Figure 1C; Figure S1). To

investigate whether this effect affected all CD8+ T cell subsets,

we sorted naı̈ve (CD44loCD62Lhigh), TCM (CD44highCD62Lhigh),

and TEM (CD44highCD62Llow) CD8+ T cells from WT donors and

transferred 26104 of each cell subset into different groups of

CD3e2/2 hosts, either alone or with identical numbers of CD4+ T

cells. The co-transfer of CD4+ T cells resulted in a strong helper

Interactions in Reconstitution of CD8 T Cell Pools
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effect on all CD8+ T cell subtypes. Surprisingly, when we

characterized the CD8+ T cells recovered in the hosts, we found

that CD4+ T cell help did not significantly modify the recovery of

CD8+CD62Lhigh T cells (Figure 1D), but had a major effect on the

accumulation of cells with the CD62Llow TEM phenotype

(Figure 1E). It should be pointed out that after transfer of

CD62LlowCD8+ cells in the presence of CD4 cells the recovery of

CD62Lhigh cells was increased, but this recovery was 10-fold lower

(105 cells) than the recovery of the CD8+ TEM cells, which

increased 10–30 times to over 106 cells. Overall, these results

demonstrated that CD4+ T cell help promotes the accumulation of

CD8+CD62Llow T cells and suggest that during CD8+ T cell

recovery the relative representation of the two cellular subsets may

be modified according to the environmental conditions.

CD4+ T cells promote accumulation of differentiated
CD8+ TEM cells

We characterized the expanded CD8+ T cells by comparing the

co-expression of multiple genes for CD8+ T cell function, in

individual CD8+CD62Llow T cells recovered from mice co-

injected or not injected with CD4+ T cells. We studied the gene

expression profiles directly in single ex-vivo cells to prevent the

bias introduced by in vitro re-stimulation [26]. The frequency of

cells expressing IFNc, granzyme A and B, and FasL effector

molecules mRNAs was much higher among the ‘‘helped’’

CD8+CD62Llow T cells (Figure 2). Individual CD8+ T cells co-

expressing perforin and both granzymes, making them potentially

cytotoxic [27], were only found among the CD62Llow progeny of

CD8+ T cells co-transferred with CD4+ T cells. Importantly, these

expression profiles differ from those of resting memory T cells

recovered after antigen immunization, which do not co-express

perforin and both granzymes and therefore are devoid of killing

capacity in the absence of antigen re-stimulation [28]. These

‘‘helped’’ CD8 T cells resemble the fully differentiated cells

generated after multiple antigen boosts that kill target cells more

efficiently than memory cells or effector CD8+ T cells recovered at

the peak of the primary response [28]. Overall, these results

demonstrated that CD4-help induces the accumulation of fully

differentiated CD8+CD62Llow TEM cells.

Timing of CD4+ T cell help
To investigate the timing of CD4-help, CD4+ T cells were

injected at different times after CD8+ T cell transfer. The CD4+ T

cells enhanced CD8+ T cell expansion and differentiation even

when transferred one month later (Figure 3A, not shown),

indicating that help still occurs in resident populations. Of note,

CD4+ T cells recoveries were similar in both groups of mice

(Figure S2 and not shown). We also studied whether help required

Figure 1. CD4+ T cells modify the LDP of CD8+ T cells. (A) 26104 CD8+ T cells were transferred alone or co-transferred with 26104 CD4naive T
cells into CD3e2/2 lymphopenic mice. The data represent the absolute numbers of CD8+ T cells recovered 8 weeks after transfer in each group of
mice with each dot representing recovery in an individual host and the bar indicating the mean values in each group. The presence of CD4+ T cells
significantly increased CD8+ T cell recoveries (***p,0.001). Similar findings were obtained in 5–6 independent experiments. (B) The number of CD8+ T
cells recovered at 4, 6 and 14 days after when transferred (alone, open dots) or co-transferred with CD4naive T cells (filled dots) into CD3e2/2

lymphopenic mice. Data represent mean6se. n = 3 mice. Similar results were obtained in a second independent experiment. (C) Dot plots showing
the CD62L phenotype of CD8+ T cells recovered 10 weeks after the transfer of 26104 CD8+ T cells alone (left) or with 26104 CD4naive T cells (right) into
lymphopenic mice. Each dot plot shows a representative staining and values inside the dot plot are the % in the respective quadrant. The right hand
graph shows the relative representation of the CD62Lhigh and CD62Llow cells (mean6se) among the CD8+ T cells recovered when transferred alone or
in the presence of CD4+ T cells. Similar results were obtained in 5–6 independent experiments. (D) Absolute numbers of CD62LhighCD8+ TCM cells
recovered 10 weeks after the injection of 26104 total CD8+ T cell from different subpopulations transferred alone or with 26104 CD4+ T cells into
CD3e2/2 hosts. (E) Absolute numbers of CD62LlowCD8+ TEM cells recovered 10 weeks after the injection of 26104 of different CD8+ T cell from
different subpopulations transferred alone or with 26104 CD4+ T cells into CD3e2/2 hosts. Statistically significant differences are shown (*p,0.05,
**p,0.01, ***p,0.001). In all cases CD8+ TEM cell numbers increased 10-fold or more in presence of CD4 help. Please note that recovery of CD62Lhigh

cells after the transfer of CD62LlowCD8+ cells in presence of CD4 help was increased, but this recovery was 10-fold lower (105 cells) than the recovery
of the CD8+ TEM cells.
doi:10.1371/journal.pone.0017423.g001

Interactions in Reconstitution of CD8 T Cell Pools

PLoS ONE | www.plosone.org 3 March 2011 | Volume 6 | Issue 3 | e17423



the continuous presence of CD4+ T cells using CD4+ T cells from

mice expressing a human diphtheria toxin receptor (DTR) under

the control of the Lat gene [29]. In these B6.Latfl-dtr-mice, the

administration of DT allowed the selective ablation of CD4+ T

cells (Figure S2) [23]. Elimination of the Lat-DTR CD4+ T cells

one week after transfer abrogated the help activity: the number of

CD8 T cells recovered was reduced and the majority retained a

TCM phenotype (Fig. 3B). Help was also abrogated when the Lat-

DTR CD4+ T cells were removed 4 weeks after transfer

(Figure 3B). However, in this case, TEM were present, but their

number was considerably reduced indicating that in the absence of

help they failed to survive and decayed after their initial expansion

and differentiation in the presence of CD4+ T cells (Fig. 3B). These

results indicate that CD4-help may induce CD8+ T cell expansion

at any point in peripheral reconstitution. At the same time, the

continuous presence of CD4+ T cells appears to be fundamental to

promote further CD8+ T cell expansion and to ensure the survival

and accumulation of CD8+TEM cells [30].

Next we determined if help was dependent on the activation

and expansion of the donor CD4 T cells. We co-transferred an

excess of CD25+ Treg cells under conditions that suppress CD4naı̈ve

T cell division and accumulation [24]. Under the conditions used

in the present study, the transfer of Treg cells did not modify the

expansion of the CD8+ T cells (Figure 3C) ruling out a direct effect

on CD8+ T cell expansion. In contrast, by adding an excess of Treg

cells in CD8+/CD4naive co-transfers we completely abrogated both

Figure 2. The help effect selectively expands fully differentiated TEM CD8+ T cells. (A) 1 to 26104 CD8+ T cells were transferred alone or
with 26104 CD4+ T cells into CD3e2/2 hosts. Mice were sacrificed 8 weeks after the transfer and CD8+CD44highCD62Llow cells from the lymph node
were single-cell sorted. Multiplex RT-PCR of 19 genes was performed on 32 single-cells for the two groups. For each individual cell, black squares
indicate that mRNA gene expression was detected; white squares indicate that the mRNA for the corresponding gene was absent ( = 0) [28]. (B) The
table shows the percent of cells positive for each gene for the two groups of cells detailed in (A). Cytotoxic cells require co-expression of both
Perforin and Granzymes A and B [27]. These cells could only be found among ‘‘helped’’ CD8+ T cells. Please note that ‘‘helped’’ CD8+ T cells harbored a
significant fraction of cells expressing Il2 and Il15 mRNAs, which are very rarely expressed during antigen-specific responses and the expression of
which is absent in memory T cells [28]. ‘‘Helped’’ CD8+ T cell populations also showed a higher frequency of Il7r-expressing and a lower frequency of
Il21r expressing cells.
doi:10.1371/journal.pone.0017423.g002

Interactions in Reconstitution of CD8 T Cell Pools

PLoS ONE | www.plosone.org 4 March 2011 | Volume 6 | Issue 3 | e17423



the expansion of the CD4+ T cells (Figure S2) and their helper

effect (Figure 3D): the number of CD8 T cells recovered was

reduced and the majority retained a TCM phenotype (not shown).

More importantly, we found that the transfer of Treg cells one

month later still reduced both the number of CD4+ T cells (Figure

S2) and the CD8+ T cell recovery (Figure 3E) mimicking the

results observed upon the late administration of DT in hosts with

Lat-DTR CD4+ T cells. Thus, the increased CD8+ T cell

accumulation was mediated by the activation and expansion of the

co-transferred CD4naive T cells, which could be interrupted at any

time point by an excess of Treg cells. Elimination of help prevented

survival and accumulation of CD8+TEM cells. By comparing

CD4+ and CD8+ T cell recoveries in the individual mice used in

these different experiments we found a strong positive correlation

(y = 1.16x229253; p,2.6610217) between the two T cell subsets

(Figure S2). In conclusion, these observations established a

quantitative aspect for the helper effect: the CD8+ T cell recoveries

were proportional to the number of CD4+ T cells recovered.

CD4+ T cell help requires CD40 expression by host APCs
We investigated the putative role of CD40 in the CD4+ T cell

helper effect observed during reconstitution because CD40

deficiencies have been shown to impair memory CD8+ T cell

responses by interfering in CD4+/CD8+ T cell collaboration

[21,31,32]. When transferred into wild-type (WT) CD3e2/2 hosts,

CD402/2CD8+ T cells responded to CD4+ T cell help as well as

WT CD8+ T cells (Figure S3A). In contrast, when the host was

CD40-deficient the WT CD4+ T cell helper effect was completely

abolished: WT CD8+ T cell recovery was low and the majority of

the cells remained CD62Lhigh (Figure 4A–B). The absence of help

could be due to an inability of donor CD4+ T cells to expand in

the CD3e2/2CD402/2 host. However, although CD4+ T cell

expansion was reduced two-fold, the CD4+ T cells expanded

approximately 30-fold (from 26104 to .56106) in CD3e2/2

CD402/2 hosts (Figure S3B). Indeed, for similar recoveries of

CD4+ T cells the number of CD8+ T cells recovered was much

lower in CD402/2 than in WT hosts (Figure 4C). The slopes of

Figure 3. Time requirements of T cell help and the role of Tregs cells. (A) 26104 CD8+ T cells were transferred into CD3e2/2 hosts. At 8 or 29
days after groups of hosts received CD4 T cells (26104 cells) and the mice were sacrificed 7 weeks after the first cell transfer. The mean CD8+ T cell
recovery is shown for the three groups of hosts (***p#0.001). It should be pointed out that the late transfer of CD4 T cells still induced the
preferential accumulation of CD62LlowCD8+ TEM cells (not shown) (B) 26104 CD8+ T cells were transferred alone or with CD4+ T cells from Lat-DTR
mice into a CD3e2/2 host. A fraction of the mice were treated with diphtheria toxin (DT) for 10 days at either one or 4 weeks after cell transfer, and
the mice were analyzed 7 weeks after cell transfer. The number of CD8+ T cells recovered 7 weeks after cell transfer is shown. CD4+ T cell depletion at
week 1 or at week 4 reduced the number of CD8+ T cells recovered (**p#0.01). Similar findings were obtained in two independent experiments. Dot
plots show representative examples of the CD62L and CD44 expression by the CD8+ T cells recovered in the different groups of mice. (C) 104 CD8+ T
cells were transferred into CD3e2/2 hosts alone or with 56104 CD4 Treg cells. The number of CD8+ T cells recovered in individual mice is given as the
mean value for each group. (D) 104 CD8+ T cells were transferred into CD3e2/2 immune-deficient hosts alone, co-transferred with 104 CD4naive T cells
or co-transferred with 104 CD4naive T cells and 56104 CD4 Treg cells in three independent groups of hosts. The number of CD8+ T cells recovered in
individual mice is given as the mean value for each group. The increased expansion of CD8+ T cells seen upon co-transfer with CD4naive T cells was
abolished when the Treg cells were added in the transferred mix. (**p#0.01) (E) 105 total CD8+ T cells were transferred into CD3e2/2 hosts alone, co-
transferred with 104 CD4naive T cells or co-transferred with 104 CD4 T cells and then given 56104 Treg cells four weeks latter. Mice were culled 8 weeks
after the initial CD8+ T cell transfer. The data indicate the number of CD8+ T cells recovered in each host. Statistically significant differences are shown
(**p,0.01). Similar findings were obtained in two independent experiments.
doi:10.1371/journal.pone.0017423.g003
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the CD4/CD8 cell number correlations confirm that the CD4

helper effect was faulty in the CD40-deficient hosts (Figure 4C).

These findings indicated that CD4+ T cell help to CD8+ TEM cells

required CD40 expression by host cells and introduce a qualitative

aspect to the CD4-helper effect; interaction with CD40 was

required for CD4+ T cell differentiation into full helper functions.

We attempted to identify the CD40+ host cell population

involved in this response. Because the magnitude of the helper

effect and the phenotypic changes induced by CD4+ T cells on the

CD8+ T cells were identical in Rag22/2 and CD3e2/2 hosts

(Figure S4) we excluded a critical role of B cells. Therefore the

CD4+ T cell of CD8+ T cells likely required CD40/CD40L

interactions with host antigen presenting cells (APCs). We found

that the CD4+ T cell transfer induced major modifications in the

host CD11c+APCs. The host CD11c+APC CD40 expression was

up regulated and the number of these cells increased 3 to 5-fold

(Figure S5A). These cells also had a higher frequency of EdU+ cells

(Figure S5B). These findings suggest that CD11c+DCs may act as

mediators of the CD4-mediated helper effect on CD8+ T cells.

During immune responses, CD4/APC interactions may lead to

the secretion of M1P-chemokines that attract CD8+ T cells [33].

We investigated whether disruption of the chemokine receptor

CCR5 affects CD4-help. We transferred WT and CCR52/2

CD8+ T cells either alone or together, with CD4+ T cells from WT

or CCR52/2 donors. When transferred alone, WT and CCR5-

deficient CD8+ T cells expanded to similar levels, though

expansion seemed increased and more variable in the CCR5-

deficient cells (Figure 4D). The WT CD8+ T cells expanded 20-

fold more in the presence of WT or CCR5-deficient helper T cells

though the help was less consistent when CCR52/2CD4+ T cells

were co-transferred (Figure 4D). Surprisingly, WT CD4+ T cells

mediated a similar 20-fold increased expansion of the CCR5-

deficient CD8+ T cells (Figure 4D). However, when both the

CD8+ and CD4+ T cells lacked CCR5, the helper effect was highly

variable. Thus, among the nine mice studied the CD8+ T cell

expansion reached values similar to those observed in the presence

of WT CD4+ T cells in only two mice, whereas CD4+ T cell help

was completely absent in three mice (Figure 4D). These findings

suggest that optimal helper effects require the expression of a

functional CCR5 by both CD8+ and CD4+ T cells. In the absence

of the CCR5 receptor, CD4/CD8 cell encounters could still occur,

but instead of being oriented and consistent they would be less

frequent and random creating great variability in the helper effects

observed.

Role of type I IFNs and IL-6
The differential effects of CD4-help suggest that the recoveries

of TCM and TEM CD8+ T cell subtypes obey different rules.

Environmental cytokines induced upon the transfer of cells into

immune-deficient hosts could play a role in shaping the helper

effect and the recovery of the CD8+ T cell subtypes. Among these

cytokines, type I IFN and IL-6 are likely candidates as the number

Figure 4. Role of CD40-CD40L interactions and CCR5. (A) 26104 CD8+ T cells were transferred alone or co-transferred with 26104 CD4+ T cells
into either CD3e2/2 or CD402/2CD3e2/2 mice. The CD8+ T cell recovery 8 weeks after transfer is shown from 2-pooled experiments (N = 9). The
helper effect observed in CD3e2/2 hosts was absent in CD402/2CD3e2/2 hosts (***p,0.001). (B) Dot plots showing representative examples of the
CD62L and CD44 expression by CD8+ T cells recovered in the different groups of mice. (C) Correlation of the number of CD8+ and CD4+ T cells
recovered in individual WT and CD40-deficient hosts. The correlation coefficients are shown (p,0.02 and p,0.001 respectively). Note the different
slopes between WT and CD40-deficient hosts. (D) 104 CD8+ T cells from WT (left) or CCR52/2 (right) were transferred alone or with CD4 T cells from
WT or CCR52/2 into CD3e2/2 host. The absolute number of CD8+ T cells recovered in the six groups 7 weeks after transfer, pooled from 2
independent experiments. Note that a similar 20-fold enhanced expansion of the WT and CCR52/2 CD8+ T cells was detected in the presence of WT
CD4+ T cells. When both CD8+ and CD4+ T cells lacked CCR5 from the nine mice studied only two mice showed accumulation of CD8 as that observed
in the presence of WT CD4+ T cells, and three mice had a lack of CD4-help. The results indicate that to achieve an optimal helper effect the CCR5
receptor should be expressed by either the CD8+ or CD4+ T cells. Relevant statistically significant differences are shown (**p#0.01).
doi:10.1371/journal.pone.0017423.g004
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of CD8+ T cells is reduced in type I IFN- and IL-6-deficient mice

[34,35]. To test the role of these cytokines we used IFNAR2/2

CD8+ T cells, which are unresponsive to Type I IFNs, and IL-62/2

host and donor mice. It should be pointed out that in both cases

input CD8 T cell populations, i.e. the frequency of naı̈ve vs.

memory CD8 T cells was identical between WT and KO

populations (Figure S6). In the absence of type I IFNs signals, the

recovery of IFNAR2/2CD8+CD62Lhigh TCM cells was 100-fold

lower than that of WT cells (104 vs. 106; Figure 5A). In the absence of

IL-6, the recovery of IL62/2CD8+CD62Lhigh T cells was ten-fold

lower than that of WT cells (105 vs. 106; Figure 5B). In both cases, the

recovery of CD8+CD62Llow TEM cells was only partial and not

significantly reduced (data not shown). Importantly, WT CD4+ T

cells induced a 100-fold greater expansion of the IFNAR2/2

CD8+CD62Llow T cells (i.e. WT CD8+ T cell levels). The absence of

IL-6 also did not prevent an increased expansion of CD8+CD62Llow

cells in the presence of CD4+ T cells (Figure 5D), but recoveries were

lower, suggesting that IL-6 may also play a role in CD8+CD62Llow T

cell accumulation. It should be pointed out that in the absence of

IL-6 the CD8/CD4 cell number correlation coefficient was

y(CD8) = 0,87x(CD4)+183231, less than in WT conditions

(y(CD8) = 1.16x(CD4)229253) (Figure S2). In conclusion, though

the recovery of CD8+ TCM cells required type I IFN and IL-6, the

increased accumulation of CD8+ TEM cells induced by CD4-help

was largely independent of type I IFN while IL-6 partially

contributes to the CD4 helper effects.

Role of IL-2 and IL-15
The expansion of CD4+ T cells in lymphopenic hosts is

accompanied by the production of IL-2, which is crucial in the

regulation of CD4+CD25+ Treg cell homeostasis [14,24], anti-

tumor CD8+ T cell responses [36] and the generation of CD8+ T

cell memory [37]. We tested the role of IL-2 in the recovery of

CD8+ T cell subsets. We found that when IL22/2 CD4+ T cells

were used as helpers in an IL-2 sufficient environment they were

able to expand, but their help was significantly reduced, although

not absent (figure 6A). We concluded that CD4-derived IL-2 is

required for optimal help but that other IL-2 sources may also be

involved. Thus, we tested the helper effect in complete absence of

IL-2 by transferring IL-22/2CD4+ T cells and IL-22/2CD8+ T

cells into IL22/2CD3e2/2 hosts. We found that when the host

and CD8+ cells were IL-2-deficient, the recovery of

CD8+CD62Lhigh cells was not altered (Figure 6B). In contrast, in

total absence of IL-2 the helper effect was reduced, but not

abrogated (Figure 6C). The study of CD8/CD4 number

correlations confirmed that the CD4 helper effect was defective

in the absence of IL-2 (Figure 6D): for similar recoveries of CD4+

T cells the number of CD8+ T cells recovered was much lower

without IL-2. We concluded that IL-2 produced or induced by the

helper CD4+ T cells plays a role in the increased accumulation of

the CD8+ TEM cells but since help was still observed in its absence

other mechanisms may also play a role.

As it has been shown that IL-15 is an important cytokine for

CD8+ T cell homeostasis, we studied CD8+ T cell recoveries and

the CD4-mediated helper effect in the absence of IL-15. Upon

transfer of IL-152/2CD8+ T cells into IL-152/2 lymphopenic

hosts, CD8+CD62Lhigh T cells recovery was poor (Figure 7A), but

IL-152/2CD4+ T cells were still able to enhance the accumulation

of IL-152/2CD8+CD62Llow T cells (Figure 7B). The IL-152/2

CD8+CD62Llow T cell recovery was, however, less than that

observed under IL-15 sufficient conditions and the CD8/CD4

correlation coefficient (y(CD8) = 0,47x(CD4)–19237) lower than in

WT conditions, but higher than in absence of IL-2. We concluded

that IL-15 plays an important role in CD8+CD62Lhigh T cell

survival/accumulation while it also contributes to the CD4-

mediated helper effect that induces the CD8+CD62Llow T cell

expansion.

Since the IL-2Rb-chain is common to signaling mediated by

both IL-2 and IL-15, we investigated its requirement in CD8+ T

cell expansion. The recovery of CD8+CD62Lhigh T cells upon

transfer of IL-2RbCD8+ T cells was consistently poor (Figure 7C).

Importantly, the recovery of IL-2RbCD62Llow TEM cells was also

reduced. In the presence of CD4+ T cells their increase was

reduced and more importantly, independent of the number of

CD4+ T cells present (Figure 7D, Figure S7), suggesting that they

responded to factors produced by the host as a consequence of the

environmental changes induced. We concluded that the signals

mediated by IL-2Rb strongly affect the accumulation of both

CD8+CD62Lhigh and also of the CD8+CD62Llow T cells

accumulating as the result of IL-2- and IL-15-mediated CD4

helper effects.

Discussion

In the present study, we compared the recoveries of

CD44+CD62Lhigh(TCM) and CD44+CD62Llow(TEM) CD8+ T cells

in different experimental settings and the absence or presence of

co-transferred CD4+ T cells. On the whole, our findings indicate

that the accumulation of TCM and TEM cells is differentially

regulated during the reconstitution of the peripheral T cell pools of

immune-deficient hosts. Therefore, though most of CD8+ T cells

recovered after the transfer of CD8+ T cells alone were

CD62Lhigh, the presence of CD4+ T cells promoted a massive

increase in the accumulation of CD8+CD62Llow cells, which are

fully differentiated and express more killer function molecules than

memory cells or effector CD8 cells recovered at the peak of the

primary immune response [28]. Why such fully effector CD8+

TEM cells are generated during peripheral T cell reconstitution is

unclear. We may assume that the differentiation to effector

functions represents a priority during immune reconstitution to

ensure protective functions [19]. However, fast differentiation of

effector CD8+ T cells and the recovery of protective functions

seems to require CD4-cell help, as only in the presence of CD4+ T

cells can CD8+ T cells express an increased frequency of effector

molecule mRNAs or generate some type of protective memory

after LDP [20,38]. If unchecked, this strong helper effect may lead

to a massive accumulation of fully differentiated CD8+ T cells,

which may be protective or deleterious according to the

environmental context. These observations are of particular

relevance in therapeutic situations in which reconstitution of the

peripheral T cell pools demands the rapid re-establishment of

CD8+ T cell effector functions.

Understanding the cellular interactions that promote the help

effect is essential to being able to manipulate peripheral

reconstitution. The CD4+ T cell help effect was immediate, as it

was observed early after transfer and persisted with time: it acted

on both recently introduced and resident CD8+ T cells. More

importantly, the effect required the continuous presence of CD4+

T cells, suggesting that first it induces an increased proliferation of

CD8+ TEM cells and later ensures their survival and accumulation.

Indeed, deletion of Latfl-dtrCD4+ T cells either 1 week or 4 weeks

after transfer resulted in a marked decline in the number of CD8+

TEM cells recovered. Moreover, even at late times after the

transfer, the frequency of proliferating CD8+ T cells was higher in

the presence of helper cells, suggesting that a continuing

interaction between the two cells is required to ensure CD8+ T

cell survival. Thus, our findings first establish a quantitative feature

for help by showing a strong positive correlation between the
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Figure 5. Type I IFN and IL-6 contribute to CD8+ TCM cell recovery. (A) 26104 CD8+ T cells from WT or IFNAR12/2 mice were transferred into
RAG2/2 mice. The CD8+CD62Lhigh TCM cell recovery after 7 weeks is shown from two pooled experiments. (B) The CD8+CD62Lhigh TCM cell recovery 8
weeks after the transfer of 26104 CD8+ T cells into RAG2/2 or RAG2/2IL-62/2 T cell-deficient hosts. (C) 26104 CD8+ T cells from WT or IFNAR12/2

mice were transferred alone or with CD4+ T cells into RAG2/2 mice. The CD8+CD62Llow T cell recovery after 7 weeks is shown for two pooled
experiments. The absence of IFNAR1 expression doesn’t prevent the CD8+ T cells to receive CD4-help. (D) The CD8+CD62Llow T cell recovery 8 weeks
after 26104 CD8+ T cells from IL-62/2 mice were transferred alone or with CD4+ T cells into RAG2/2IL-62/2 mice. Statistically significant differences
are shown (*p#0.05; **p,0.01; ***p,0.001).
doi:10.1371/journal.pone.0017423.g005
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numbers of CD8+ and CD4+ T cells; the higher the expansion of

CD4+ T cells the higher were the CD8+ T cell recoveries. Once

the CD4-expansion was abolished and the CD4 numbers reduced

the CD8+ TEM cells failed to survive and their accumulation

lessened. Indeed, CD4-help could be abrogated by the simulta-

neous or late transfer of Treg cells, which suppress CD4naı̈ve T cell

expansion [24]. Notably, Treg cells have been reported to suppress

CD8+ T cell immune responses in vitro [39] and in vivo [36,40,41],

but their role in CD8+ T cell reconstitution was still unclear. Here,

Treg cells alone did not modify CD8+ T cell recovery, indicating

that Treg cells can regulate CD8+ T cell LDP by down modulating

CD4+ T cell activation [36]. Thus, protocols that deplete Treg cells

may favor CD8+ T cell responses [40,41] also by boosting CD4+

help rather than simply preventing their direct effect in CD8+ T

cells. The Tregs can therefore, be used to abridge the self-aggressive

behavior of the fully differentiated CD8+ TEM cells resulting from

a deregulated CD4 T cell response. Damping the inflammatory

response induced by CD4+ T cells with Treg cells abrogates help

and may also prevent CD8-mediated self-aggression.

We gathered strong evidence indicating that CD4+ T cell help

of CD8+ T cells requires the intervention of third party host APCs,

and that this effect is CD40-dependent [20]. In response to a

lymphopenic environment, donor CD4+ T cells induce the up-

regulation of CD40 and the activation of host APCs, creating a

positive feedback loop that further sustains CD4+ T cell expansion.

When CD40 was absent from the host environment the strong

positive correlation between CD8 and CD4 T cell numbers was

lost. The lack of CD4 T cell help in the CD40-deficient hosts,

despite their .50-fold expansion, introduces a new qualitative

facet to CD4 help; it suggests that CD4+ T cells require

interactions with CD40 and/or co-stimulation molecules in the

host APCs [42] in order to differentiate and be fully licensed to

Figure 6. Role of IL-2 in the CD4+-dependent accumulation of CD8+ T cells. (A) 1.56104 CD8+ T cells from WT mice were transferred alone or
with equal numbers of CD4naive T cells from WT or IL-2-deficient mice into CD3e2/2 hosts. CD8+ T cell recovery in individual hosts of the 3 groups is
shown. (B) 26104 CD8+ T cells from IL-2-deficient mice were transferred alone or with CD4 T cells into immune-deficient WT or IL-22/2 hosts. The
CD8+CD62Lhigh TCM cell recovery after 7 weeks is shown for two pooled experiments. (C) The left panel shows the CD8+CD62LlowTEM cell recovery
after 7 weeks in IL-22/2 hosts from two pooled experiments. The right panel shows the fold increases of CD8+ TEM cell recovery calculated by dividing
the number of CD8+ T cells recovered in the presence of CD4+ T cells by the number of CD8+ T cells recovered in the absence of CD4+ T cells.
CD8+CD62Llow T cell recovery increased about 50-fold, under WT conditions, but only 5-fold in the absence of IL-2. (**p#0.01). WT data pooled from 3
different experiments (D) Correlation of the number CD8+ T cells and CD4+ T cells recovered in individual hosts in the presence or in the absence of
IL-2. The correlation coefficients are shown (p,0.0001 and p,0.03 respectively). Data pooled from 3 different experiments.
doi:10.1371/journal.pone.0017423.g006
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mediate helper effects. In view of our current findings it is likely

that the in vivo use of CD40-agonists [43,44] may ensure fast

effector cell recoveries during lymphopenia restoration.

The help effect likely requires the formation of APC/CD4/

CD8 cell clusters. During immune responses, interactions between

CD4 cells and APCs have been shown to lead to the secretion of

CCL3 and CCL4 chemokines that are supposed to attract

CCR5+CD8+ T cells to the APC/CD4+ T cell clusters [45]. We

showed that CCR5 expression by CD8+ T cells is not required for

the helper effects observed during reconstitution. However,

optimal helper effects required the expression of a functional

CCR5 chemokine receptor by at least one of the two intervening

populations, suggesting that both activated CD4+ and CD8+ T

cells secrete chemokines that attract opposite CCR5+ partners

[46]. In the absence of CCR5 a cell subset would be unable to

respond to the chemokine, but it could still attract other CCR5+

subsets. In contrast, when both cell populations lack CCR5, CD4/

CD8 T cell encounters would occur purely at random and, thus,

less frequently and less efficiently, resulting in a wide-range of

variation in helper effects. Because the CCL3 and CCL4

chemokines are produced mainly at sites of APC-T cell

interactions [33], our findings would suggest that CD4/CD8 T

cell interactions likely occur in close vicinity to host APCs. The

results also indicate that activated CD8+ T cells are able to

maintain a chemokine gradient that enhances the establishment of

interacting cell clusters.

Interestingly, though CD4-help in both LDP and conventional

responses require third party APCs and a close vicinity of the three

intervening populations [33], the CD8+ TEM cells generated

during LDP or conventional responses differ in CD40 require-

ments. We showed that, during LDP, the CD4-help of CD8+ T

cells was dependent on CD40+APCs, whereas CD8+ T cells might

also receive CD4-help directly through CD40 during conventional

responses [21]. Because CD8 reconstitution requires sustained

help from licensed CD4+ T cells despite transient help sufficing to

generate memory CD8+ T cells during immune responses [21], we

postulate that, during a response, the presence of high loads of

antigen allow stimulation of the specific CD8 T cells by helper cells

Figure 7. Role of IL-15 in the CD4+-dependent accumulation of CD8+ T cells. (A) The number of CD8+CD62Lhigh T cells recovered in Rag2/2

and in Rag2/2IL-152/2 hosts after 26104 naı̈ve CD8+ T cells from WT or IL-152/2 mice were transferred alone or with CD4+ T cells into immune-
deficient WT or IL-152/2 hosts. (B) 26104 naı̈ve CD8+ T cells from IL-152/2 mice were transferred alone or with IL-152/2 CD4+ T cells into immune-
deficient IL-152/2 hosts. The CD8+CD62Llow T cell recovery after 4 weeks is shown for two pooled experiments. In the complete absence of IL-15, we
observed an increased accumulation of the CD8+ (CD62Llow) T cells in presence of the CD4+ T cells. Statistically significant differences are shown
(*p#0.05; **p,0.01). (C) The CD8+CD62Lhigh TCM cell recovery 7 weeks after transferring 26104 naı̈ve CD8+ T cells from WT or IL-2Rb2/2 donors alone
into immune-deficient mice. Similar results were obtained in three independent experiments (**p#0.01). (D) 26104 naı̈ve CD8+ T cells from WT (left)
or IL-2Rb2/2 donors (right) were injected alone or with 26104 CD4+ T cells into immune-deficient hosts. The bars indicate the mean6se of CD8+ TEM

cell recovery after 8–9 weeks from four pooled experiments (n = 20–24) (**p#0.01; ***p,0.001). (E) Correlation of the number of WT (left) or IL-2Rb2/2

(right) CD8+ T cells and WT CD4+ T cells recovered in individual hosts. The correlation coefficients are shown (p,0.0001 and NS respectively).
doi:10.1371/journal.pone.0017423.g007
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[21] whereas, during LDP, low loads of antigen specific for each of

the responding CD8 T cells require additional stimulation by the

host CD40+APCs.

The different impact of CD4+ T cell-dependent help on the

different CD8+ T cell subsets prompted us to investigate the signals

involved in TCM and TEM CD8+ T cell repopulation. Reconsti-

tution of the peripheral CD8+ T cell pool, besides requiring TCR-

MHC recognition is generally believed to be mostly dependent of

IL-15 and IL-7 mediated signals [4,5,47]. We confirmed the role

of IL-15 and IL-2Rb-mediated signals, but further identified a

major role of IL-6 and type I IFNs in CD8+ TCM cell expansion.

The absence of IL-6 had a similar impact as IL-15 deprivation

reducing CD8+ TCM cell yields by 10-fold. Surprisingly, the effect

of type I IFNs was greater because IFNAR2/2 CD8+ TCM cell

yields were reduced 100-fold compared to WT cells. In light of

these findings, lower Type I IFNs and IL-6 levels likely contribute

to the observation that germ-free immune-deficient hosts do not

support the marked T cell LDP observed in conventionally raised

mice [48]. Interestingly, in adult mice the frequency of naı̈ve vs.

memory CD8 T cells is identical between IFNAR2/2, IL-62/2

and WT populations suggesting that the role of these cytokines is

only determinant during CD8 T cell responses. Indeed, type I

IFNs and IL-6 have been shown to be required in the control of

viral infections, [34,35] and type I IFNs play a role in the

generation of effector and memory CD8+ T cells [34]. Here we

described a mechanism through which type I IFNs and IL-6 could

promote efficient secondary immune responses by facilitating the

accumulation of CD8+ TCM cells. In contrast, the accumulation of

CD8+ TEM cells was completely independent of type I IFNs, while

IL-6 and IL-15 participate in their accumulation in presence of

CD4 help. IL-6 has been shown to be involved in CD8-mediated

colitis arising during lymphopenia [49] in agreement with our data

showing a role for IL-6 in TEM accumulation.

IL-2 and IL-15 signals using the IL-2Rb chain expressed by the

CD8+ T cells, mediated mostly the CD8+ TEM cell recovery.

Indeed, CD4-help of CD8+ TEM cells was reduced in the absence

of IL-2, IL-15 or when the CD8+ T cells were IL-2Rb-deficient.

CD8+ T cell expansion has been reported to occur when these cells

are exposed to increased IL-2 levels [50] or during adoptive cancer

immunotherapy using antigen-specific CD8+ T cells in the

presence of IL-2-sufficient CD4+ T cells [36]. We confirmed that

CD4-derived IL-2 plays a role in the selective expansion of CD8+

TEM cells during peripheral reconstitution of lymphopenic hosts,

but we have also gathered evidence supporting a role for IL-15.

Comparing directly the effects of the absence of IL-2 or IL-15 we

found that while the absence of IL-15 impinges strongly in the

TCM cell recovery and less in TEM cell recovery, the absence of IL-

2 does not alter TCM cell recovery and affects exclusively TEM cell

recovery. The observed increased accumulation of IL-2Rb-

deficient TEM cells was independent of the number of CD4+ T

cells recovered, suggesting that they are likely expanding in

response to environmental inflammation induced by the activated

helper cells. The recent report that CD8+ T cells expand

extensively once transferred into IL-2Rb-deficient mice despite

the presence of increased numbers of activated CD8+ T cells [50],

suggests that two CD8+ T cell types occupy different niches and

probably belong to different kin: one dependent on IL-2/IL-15

and the other, present in the IL-2Rb-deficient hosts, not. IL-2-

deficient mice also show uncontrolled CD4+ T cell activation and

increased number of ‘‘IL-2 independent’’ CD8+ T cells. [51] The

CD8+ T cells from IL-2Rb-deficient mice are selected in absence

of IL-2 and IL-15 signals and therefore likely to be more reactive

to other cytokines. We suggest that IL-6 is a likely candidate, but

we cannot rule out the existence of other yet unidentified factors

able to promote CD8+ TEM cell expansion during this LDP helper

response.

Our findings uncover novel aspects of the interactions between

co-expanding T cells in response to a lymphopenic state, which

may be particularly relevant to clinical attempts at reconstituting

the peripheral T cell pool or boosting tumor-specific immune

responses. The expansion of CD4+ T cells leads to the expansion

of a differentiated CD8+ TEM cell pool. Importantly, CD8+ TCM

cell recovery is not significantly altered, pointing to several

dichotomies in the survival and expansion of different CD8+ T cell

subsets during peripheral T cell recovery. Though the mainte-

nance of CD8+ TCM cell numbers is strictly dependent on IFNAR

expression and strongly requires IL-6 and IL-15, the expansion of

CD8+ TEM cells does not, as it is mainly dependent on CD4-help

to bypass such requirements; while the expansion and mainte-

nance of CD8+ TCM cell numbers can occur in the absence of

help, the expansion of CD8+ TEM is strongly determined by CD4+

T cell help. The segregation of the signals controlling the CD8+ T

cell subsets allows lenient control of fully differentiated CD8+ TEM

cells, which massively increase once a CD4+ T cell ‘‘perturbation’’

is introduced, providing the immune system with the capacity to

readily adapt during repeated antigenic challenges to ensure

immediate effector responses [52], while the number of CD8+

TCM cells remains under control to confer future protection [53].

On the whole our results unveil the complexity of CD4 helper

effects to CD8 T cells demonstrating that, during LDP, help is

determined by multiple factors that operate differently according

to the environmental settings. Among these settings expression of

IL-2Rb by CD8 cells bests CD40 expression by host APCs, and

among cytokines there is a hierarchy where IL-2.IL-15.IL-6.

Supporting Information

Figure S1 Effects of CD4-help on CD8 T cell division
and death rates. (A) CD8+ T cells were stained with CFSE and

106 injected alone or with 26104 CD4+ T cells into CD3e2/2

mice. The CFSE staining of the CD8+ T cells recovered by day 4

is shown. The percentage of CFSE+ and CFSE2 cells is shown in

the respective gate. Similar results were obtained in a second

independent experiment. (B) 26104 CD8+ T cells were injected

alone or with CD4+ T cells into CD3e2/2 mice. After 10 days,

host mice were treated with EdU. Three days latter cells were

stained for EdU and Annexin V expression. The upper histograms

show EdU staining among the LN CD8+ T cells for one

representative host (out of 5). The fraction of Edu stained cells is

shown. The lower histograms show the Annexin V staining among

the LN CD8+ T cells for one representative host (out of 3). The

fraction of Annexin V stained cells is shown. Similar results were

obtained in a second independent experiment. (C) The histograms

show the CCR7 expression among the recovered CD8+ T cells.

The MFI is provided. CCR7 expression by CD8+ T cells was

reduced in presence of the CD4+ T cells (dotted line).

(TIF)

Figure S2 CD4+ T cell recoveries. (A) The absolute number

of CD4+ T cells recovered after 26104 CD4+ T cells were

transferred 8 or 29 days after the transfer of 26104 CD8+ T cells

(corresponding to data in Figure 3A). (B) The absolute number of

LAT-DTR CD4+ T cells recovered 8 weeks after 26104 LAT-

DTR CD4+ T cells were transferred together with 26104 CD8+ T

cells into host mice that were either left untreated or treated with

DT 1 week or 4 weeks after transfer. (C) The absolute number of

CD4+ T cells recovered 8 weeks after 104 CD4+ T cells were co-

transferred with 26104 CD8+ T cells, co-transferred with 26104
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CD8+ T cells and 56104 Treg cells or co-transferred with 26104

CD8+ T cells into host mice that received 56104 Treg cells 4 weeks

after transfer. (D) Correlation of the number of CD8+ and CD4+ T

cells recovered in individual mice from the experiments shown in

Figure 3. The correlation coefficients are shown (p,2.6610217).

(TIF)

Figure S3 Expansion of CD8+CD402/2 T cells. (A) The

absolute number of CD8+ T cells recovered 8 weeks after 26104

CD8+ T cells from WT or CD402/2 donors were transferred

alone or with CD4 T cells into CD3e2/2 mice. The increased

accumulation of CD8+ T cells was observed regardless of whether

these cells were able to express CD40. (B) Control of the
growth of the CD4+ T cells in CD402/2 hosts. CD4+ T cell

recovery 10 weeks after the of the transfer of 26104 CD4+ T cells

co-injected with WT or CD402/2 donor T cells into CD3e2/2 or

CD402/2CD3e2/2 hosts. Note that CD4+ T cell expansion still

occurred in the absence of CD40. Results are from two pooled

experiments. Statistically significant differences are shown

(*p#0.05; ***p,0.001).

(TIF)

Figure S4 Help in RAG2/2 host mice. The absolute number

of CD8+ T cells recovered 7 weeks after 26104 CD8+ T cells were

transferred alone or with CD4 T cells into CD3e2/2 or RAG2/2

hosts. The helper effect was observed in the presence or absence of

B cells. Statistically significant differences are shown (***p,0.001).

(TIF)

Figure S5 Role of CD11c+ APCs. (A) CD40 expression

among the host CD11c+ cells (left) and the total number of host

CD11c+ cells (right) recovered 17 days after 26104 CD8+ T cells

were transferred alone or with 26104 CD4+ T cells into CD3e2/2

mice. (**p#0.01). Values outside the histogram represent the

mean6se (right). To enumerate CD11c+ cells, spleen and LNs

were incubated 45 min at 37uC in RPMI containing DNAse I

(50 mg/ml) and collagenase type IV (1 mg/ml). In the presence of

CD4+ T cells, the number of CD11c+ cells and their CD40

expression increased. CD4+ T cell transfer did not modify CD80,

CD86 or MHC class II expression by the host APCs (not shown).

(B) The EdU staining among CD11c+ cells in the spleen for one

representative host (out of 5). The fraction of Edu stained cells is

shown. Similar results were obtained in two independent

experiments.

(TIF)

Figure S6 Phenotype of CD8+ T cells. Dot plots show the

phenotype of donor CD8+ T cells from WT (left); INFR12/2

(middle) and IL-62/2 mice.

(TIF)

Figure S7 Role of IL-2 in CD4+ T cell help. The fold

increases of CD8+ T cell recovery 8 weeks after the transfer of

26104 CD8+ T cells alone or with 26104 CD4+ T cells into

CD3e2/2 mice, calculated by dividing the number of CD8+ T

cells recovered in the presence of CD4+ T cells by the number of

CD8+ T cells recovered in the absence of CD4+ T cells. CD8+ T

cell recovery increased 10 to 30-fold in the presence of WT CD4+

T cells, but only 2 to 3-fold in the total absence of IL-2 or if they

lacked the IL-2Rb chain.

(TIF)
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