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The dissection of natural selection and

neutral processes remains a core problem

for molecular evolutionary biologists. One

of the longest-standing controversies con-

cerns the causes of genome base compo-

sition, notably the variation in the sum of

G and C content (GC) between 17% and

75% in bacteria. Sueoka argued very early

that GC content variation is driven by

mutational biases and, as this bias affects

non-synonymous sites, protein evolution

might also be largely driven by neutral

forces [1]. Later, Muto and Osawa

showed that 4-fold degenerate positions

in codons exhibit the largest range of GC

content (GC4), whereas the non-degener-

ate second codon positions (GC2) exhibit

the narrowest (Figure 1) [2]. As the

footprint of genomic GC variation is most

evident in those sites under the least

selective constraint for amino acid com-

position, it has become accepted that GC

content variation is primarily driven by

neutral mutational effects and has little

adaptive relevance [2].

Two papers in the current issue of PLoS

Genetics aim to test whether the variation in

bacterial genomic GC content results

directly from mutation biases. Far from

observing variation in mutational patterns

concordant with the range of GC content,

Hildebrand et al. [3], and Hershberg and

Petrov [4] independently point to a strong

and consistent AT pressure on bacterial

genomes, whereby de novo GC R AT

mutations arise much more commonly

than the reverse. Hershberg predicts that

most bacterial genomes, if left entirely

vulnerable to mutation, would approach

an equilibrium GC content of 20%–30%,

close to the highly reduced genomes of

endosymbionts [5]. Discounting a rather

implausible scenario whereby nearly all

diverse GC-rich taxa are converging to-

wards a low GC content, one is forced to

conclude that the excess A and T generated

by mutation bias (AT pressure) is lost over

time. If so, mutational patterns are not

strongly shaping genomes after all, and

something else is keeping GC contents up.

Hildebrand and co-workers analyze

polymorphism data from 149 phylogenet-

ically diverse species corresponding to a

wide range of GC content. A major

strength of this analysis is that it tests for

a number of possible confounders that

might explain the excess of GC R AT

changes, including variation in mutation

rates, sequencing errors, and violations of

the infinite sites assumption. The propor-

tion of GC « AT changes that are GC R
AT (Z) is almost always .0.5, and is

positively correlated with GC4. This

means that AT pressure is strongest in

GC-rich genomes. For the most GC-poor

genomes, the ratio is reversed (Z,0.5), but

this might result from violation of the

infinite sites assumption at extreme GC

content. In fact, the extreme AT-rich

genomes of Buchnera do have Z = 0.5 [6].

Hershberg and Petrov exploit full ge-

nome data of five very recently evolved

‘‘clonal pathogens’’, presumably under

relaxed selection, allowing precise detec-

tion of mutational patterns. This more

limited dataset includes no extreme GC-

poor genomes. On the other hand, the

availability of a large number of SNPs and

of an outgroup allows the comparison of

patterns within and between species.

Consistent with the results of Hildebrand

et al., Hershberg and Petrov find an excess

of GC R AT mutations in synonymous,

non-synonymous, and intergenic sites.

Comparisons with the outgroup species

suggest this is not caused by loss of repair

genes, and that it abates over greater

phylogenetic distances (i.e., between ‘‘spe-

cies’’). This pattern is similar to that

previously found in E. coli [7], and reflects

the action of purifying selection (or a

process that mimics selection) preferential-

ly removing AT-enriching mutations over

time. Hershberg and Petrov’s study also

highlights the significance of weaker puri-

fying selection in newly emerged patho-

gens, as shown in Shigella strains [7].

Strikingly, they find no evidence for a

correlation between predicted GC con-

tents at mutational equilibrium and extant

base composition, suggesting that muta-

tional bias might have no role in shaping

genome composition. Hildebrand et al.

show a similar qualitative bias, but pre-

dicted equilibrium values vary between

5% and 90% GC. As methods and

datasets differ in the two studies, further

analyses will be required to shed light on

this issue.

Taken together, the evidence for a

common mutational pressure towards

low GC is clear. The process maintaining

base composition in GC-rich genomes

must be very strong, because a genomic

GC content of 75% corresponds to a GC4

of nearly 100% (Figure 1). This represents

a ,70% gap with Hershberg and Petrov’s

predicted mutational equilibrium. Two

distinct processes might be at work: biased

gene conversion (BGC) and natural

selection.

In certain eukaryotes, BGC results from

recombination between heterologous se-

quences preferentially removing AT poly-

morphisms [8]. Contrary to sexual eu-

karyotes, allelic recombination in bacteria

requires horizontal transfer. As a result,

rates of recombination between, and even
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within, different bacterial species are

notoriously variable. Consistent with the

action of BGC, ecologically isolated

endosymbionts do not recombine and

have extremely rich AT genomes [5],

and regions of high recombination in E.

coli are also GC rich [9]. Yet, Hildebrand

et al. found qualitatively similar results

when excluding taxa with evidence for

recombination. Hershberg and Petrov

mostly use nearly clonal genomes and

still find a large gap between mutation

patterns and genome composition. While

available evidence suggests a weak role for

BGC in the variation of GC content in

bacteria, it is very difficult to completely

rule out a role for BGC because it purges

AT polymorphisms just like natural selec-

tion. As a result, recently emerged

pathogens with an excess of AT polymor-

phisms experience both weakened selec-

tion and decreased recombination, both

of which could potentially explain a

decrease in GC content. More research

is needed on the impact of BGC in

bacterial genomes.

The alternative to BGC is that high GC

contents are selectively maintained. Many

explanations for GC content variation

have been proposed (summarized in

Table 1). GC content variation is most

marked at synonymous and intergenic

sites. Hence, any selective explanation for

this variation forces us to turn the

traditional concept of the ‘‘neutral site’’

on its head (Figure 1). In this new view, no

single position is evolving neutrally in

genomes. As a result, 4-fold degenerate

positions are not the closest proxy to

mutational patterns, but the result of

selection for genomic GC content. If so,

we are facing a seismic shift of paradigm in

molecular evolution. Detection of adaptive

features such as codon bias or amino acid

frequencies currently rely on a back-

ground null hypothesis assumed to reflect

neutrality. Neutral models are also the

basis of coalescent-based studies of bacte-

rial demography. If there are no neutral

positions, then there is no neutral null by

which to detect adaptation and we are

required to first superimpose selection

leading to genome composition in evolu-

tionary studies.

Previous selective explanations for GC

content variation are wide-ranging and

include considerations of the cost and

availability of nucleotides [10], aerobiosis

[11], and genome length [12] (Table 1).

Metagenomics analyses indicate a strong

environmental component to GC content

variation [13,14], and it is intriguing that

the most GC-rich taxa yet sequenced have

very large genomes and live in the soil.

Any selective explanation for GC content

must tackle the problem of small selection

coefficients at individual sites. This has

been a long-standing argument against

selection for temperature adaptation shap-

ing mammalian isochores [8,15]. Howev-

er, bacteria have smaller genomes and

supposedly much larger effective popula-

tion sizes than mammals. This might

facilitate the selection of mild-effect

polymorphisms [16].

Even if one discovers a source of

selection for GC content, basic questions

will remain. For example, does GC

variation reflect differences in the selective

optima or just differences in the strength of

selection? These and previous studies

suggest that adoption of intimate associa-

tions with eukaryotes leads to a reduction

in the effective population size and to AT

enrichment, possibly due to less efficient

purging of GC R AT mutations (but see

[17]). But does it follow that GC-rich

genomes are universally desirable, yet only

achievable for taxa with a very large

effective population size? Alternatively,

intermediate GC contents might some-

times be optimal, e.g., because of trade-

offs between traits associated with different

explanatory variables. In this latter view,

GC content variation would emerge

through a combination of variation in

selective optima and effective population

sizes. One further intriguing question is,

why haven’t mutational patterns evolved

towards generating the optimal composi-

tion in genomes? If it is confirmed that

selection and mutation biases are always

antagonistic in GC-rich genomes, what

does this reveal about the mutation

process?

Finally, are such biases peculiar to

bacteria? In Arabidopsis thaliana, muta-

tional patterns are also AT rich [18], and

in mammals and birds there is evidence

linking recombination rates with the rise

in frequency of GC polymorphisms and

isochore structure [8]. Could all such

Figure 1. The GC composition of genomes is strongly correlated with second codon
(GC2) and 4-fold degenerate positions (GC4) [2]. Second codon positions show low
variability due to purifying selection on non-synonymous changes. 4-fold degenerate positions
vary between 5% and 97% GC among published genomes. In the classical neutral scenario (red),
4-fold degenerate positions are nearly neutral and their composition results essentially from
mutational patterns. These patterns are modified in bacteria that lose repair genes, such as
mutators, which show additional AT pressure (grey area) [19]. In the selectionist view (blue), the
composition of 4-fold degenerate positions results from selection for GC content, the mutational
patterns are AT-rich relative to genome composition, and there are no neutral positions.
Naturally, this is an idealized view of genomes that code for many additional overlapping signals
that are under selection, e.g., codon usage bias, regulatory signals, etc.
doi:10.1371/journal.pgen.1001104.g001
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patterns be universally linked to the

same biological processes? The ever-

expanding sequencing output should

soon allow extensive comparative studies

to shed a great deal of light on these

mysteries.
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