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By triggering immunogenic cell death, some anticancer compounds, including anthracyclines 
and oxaliplatin, elicit tumor-specific, interferon-–producing CD8+  T lymphocytes (Tc1 
CTLs) that are pivotal for an optimal therapeutic outcome. Here, we demonstrate that chemo
therapy induces a rapid and prominent invasion of interleukin (IL)-17–producing  (V4+ 
and V6+) T lymphocytes ( T17 cells) that precedes the accumulation of Tc1 CTLs within 
the tumor bed. In T cell receptor / or V4/6/ mice, the therapeutic efficacy of chemo-
therapy was compromised, no IL-17 was produced by tumor-infiltrating T cells, and Tc1 CTLs 
failed to invade the tumor after treatment. Although  T17 cells could produce both IL-17A 
and IL-22, the absence of a functional IL-17A–IL-17R pathway significantly reduced tumor-
specific T cell responses elicited by tumor cell death, and the efficacy of chemotherapy in 
four independent transplantable tumor models. Adoptive transfer of  T cells restored the 
efficacy of chemotherapy in IL-17A/ hosts. The anticancer effect of infused  T cells was 
lost when they lacked either IL-1R1 or IL-17A. Conventional helper CD4+  T cells failed to 
produce IL-17 after chemotherapy. We conclude that  T17 cells play a decisive role in 
chemotherapy-induced anticancer immune responses.

© 2011 Ma et al.  This article is distributed under the terms of an Attribution–
Noncommercial–Share Alike–No Mirror Sites license for the first six months after 
the publication date (see http://www.rupress.org/terms). After six months it is 
available under a Creative Commons License (Attribution–Noncommercial–Share 
Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/
by-nc-sa/3.0/).

The current management of cancer patients re-
lies upon the therapeutic use of cytotoxic agents 
that are supposed to directly destroy cancer cells 
through a diverse array of cell death pathways. 
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(and perhaps the targets) of IL-17 in the tumor microenvi-
ronment may determine whether this cytokine negatively or 
positively affects tumor growth. Whether conventional anti-
cancer therapies such as chemotherapy and radiotherapy 
modulate IL-17 secretion and/or Th17 polarization remains 
to be explored (Maniati et al., 2010).

Similarly, the contribution of  T cells in tumor immuno
surveillance is still elusive (Hayday, 2009). In humans, V1+  
T cells have been shown to mediate immunosuppressive ac-
tivities (Peng et al., 2007) or, on the contrary, to be associated 
with a reduced occurrence of cancers in transplanted patients 
bearing a CMV infection (Déchanet et al., 1999; Couzi et al., 
2010) and with long-term relapse-free survival after BM 
transplantation (Godder et al., 2007). V2+  T cells can be 
activated by various synthetic ligands to produce Th1-like cyto
kines, exhibit cytotoxic functions against tumors (Kabelitz  
et al., 2007), and mediate antitumor effects in patients (Wilhelm 
et al., 2003; Dieli et al., 2007). Although various  T cell 
subsets are capable of producing IL-17 during microbial in-
fection or autoimmune disorders of mice (Shibata et al., 2007; 
O’Brien et al., 2009), very little is known about the incidence 
and functional relevance of IL-17–producing  T cells (that 
we termed  T17) in cancer (Gonçalves-Sousa et al., 2010). 
 T17 cells have been reported to share most phenotypic 
markers with Th17 cells (expressing CCR6, RORt, aryl hy-
drocarbon receptor [AhR], IL-23R, IL-17A, and IL-22; Martin 
et al., 2009).  T17 cells depend upon TGF- but not IL-23 
or IL-6 for their development and maintenance (Do et al., 
2010) and can be activated by IL-1 plus IL-23 (Sutton et al., 
2009). They are unrestricted by V usage (although they are 
mostly V4 in the context of mycobacteria [Martin et al., 
2009] and experimental autoimmune encephalitis [Sutton  
et al., 2009]). Recent work suggests that thymic selection does 
little to constrain  T cell antigen specificities, but instead de-
termines their effector fate. When triggered through the TCR, 
ligand-experienced cells secrete IFN-, whereas ligand-naive 
 T cells produce IL-17 (Jensen et al., 2008). CD27+  thy-
mocytes expressed LTR and genes associated with a Th1 
phenotype, in contrast to CD27  thymocytes which give 
rise to IL-17–producing  cells (Ribot et al., 2009).

Therapy-induced immunogenic tumor cell death that 
stimulates a therapeutic anticancer immune response can be 
expected to influence the composition and/or the architec-
ture of tumor immune infiltrates, which in turn contribute to 
the control of residual tumor cells. Here, we demonstrate that 
both IL-17A/IL-17RA signaling and  T cells are required 
for optimal anticancer responses and that the source of IL-17A  
is the  T population during immunogenic chemotherapy 
and radiotherapy. We show that an early tumor infiltration by 
 T17 cells is a prerequisite for optimal tumor colonization 
of IFN-–producing CD8+ T cells.  T cell activation de-
pends on IL-1R1 and IL-1 (but not IL-23) produced by 
DCs in response to immunogenic dying tumor cells. Finally, 
the adoptive transfer of WT  T17 cells can restore the ther-
apeutic efficacy of anticancer chemotherapy that is compro-
mised in IL-17A/ hosts.

Nonetheless, several lines of evidence point to a critical con-
tribution of the host immune system to the therapeutic activ-
ity mediated by tumoricidal agents (Nowak et al., 2002, 2003). 
Indeed, in some instances, the cell death triggered by chemo-
therapy or radiotherapy allows recognition of dying (anthra-
cycline-treated or irradiated) tumor cells by antigen-presenting 
cells, thus eliciting a tumor-specific cognate immune response 
for tumor resolution. Whether cell death is immunogenic or 
not depends on the presence of tumor-specific antigens, as 
well as on the lethal hit. Thus, oxaliplatin (OX) and anthracy-
clines induce immunogenic cell death, whereas other chemo-
therapeutic agents such as cisplatin and alkylating agents tend 
to induce nonimmunogenic cell death (Casares et al., 2005; 
Obeid et al., 2007). Stressed and dying tumor cells may emit 
a particular pattern of “danger signals,” and these cell death–
associated molecules are either exposed on the surface of  
dying cells or secreted into the microenvironment. The com-
bined action of “find-me” and “eat-me” signals, together with 
the release of hidden molecules that are usually secluded 
within live cells may influence the switch between silent 
corpse removal and inflammatory reactions that stimulate the 
cellular immune response (Zitvogel et al., 2010). We initially 
described the crucial importance of an eat-me signal represented 
by the early translocation of the endoplasmic reticulum resi-
dent calreticulin–ERp57 complex to the plasma membrane 
for the immunogenicity of tumor cell death (Obeid et al., 
2007; Panaretakis et al., 2008, 2009). Next, we showed that 
the nuclear alarmin HMGB1 must be released into the tumor 
microenvironment to engage TLR4 on host DCs to facilitate 
antigen processing and presentation (Apetoh et al., 2007). We 
also reported that ATP released from dying tumor cells could 
trigger the purinergic P2RX7 receptor on host DC, stimulat-
ing the release of IL-1, which in turn facilitates the priming 
of CD8+ tumor-specific T cells for IFN- production that is 
indispensable for the success of chemotherapy (Ghiringhelli 
et al., 2009).

Although the contribution of IFN- to tumor surveil-
lance and anticancer immune responses is clearly established, 
that of the IL-17A–IL-17R pathway remains controversial 
(Martin-Orozco and Dong, 2009; Muranski and Restifo, 
2009; Ngiow et al., 2010). In tumor models where CD4+  
T cells are the source of IL-17, this cytokine could induce 
Th1-type chemokines, recruiting effector cells to the tumor 
microenvironment (Kryczek et al., 2009) or promote IL-6–
mediated Stat3 activation, acting as a protumorigenic trigger 
(Kortylewski et al., 2009; Wang et al., 2009). Tumor-specific 
Th17 exhibited stronger therapeutic efficacy than Th1 cells 
upon adoptive transfer, and converted into effective IFN- 
producers (Muranski et al., 2008) and/or triggered the ex-
pansion, differentiation, and tumor homing of tumor-specific 
CD8+ T cells (Martin-Orozco et al., 2009). IL-17–producing 
CD8+ T cells also reduced the volume of large established  
tumors and could differentiate into long-lasting IFN- pro-
ducers (Hinrichs et al., 2009). In contrast, Kwong et al. 
(2010) described a tumor-promoting, IL-17–producing TCR 
+CD8+ cell subset. Therefore, the heterogeneous source 
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CD8+ T and  T cells were polarized to become potent pro-
ducers of IFN- and IL-17, respectively. DX-based chemo-
therapy substantially enhanced IFN- production by CD8+ and 
CD4+ TILs, as well as IL-17 production by  TILs (Fig. 1 G).

 T17 cells preceded and predicted the accumulation  
of Tc1 CTLs in tumor beds after chemotherapy
Kinetic experiments revealed that  TILs invaded MCA205 
tumor beds and produced IL-17 shortly after chemotherapy, 
with significant increases (9-fold) over the background 4 d 
after DX injection (Fig. 2 A, left).  TILs still rapidly divided 
(as indicated by the expression of Ki67) 8 d after DX treat-
ment (Fig. 2 B). This early induction of IL-17–producing  
T cells (Fig. 2 C, left) contrasted with the comparatively late 
induction of IFN-–producing CD8+ T cells, which emerged 
sharply 8 d after chemotherapy (Fig. 2 C, right) and rapidly 
proliferated (Fig. 2 B). Altogether, anthracyclines induced an 
early Th17-biased inflammation together with a marked Th1 
polarization in MCA205 tumor beds, associated with a brisk 
infiltration of  T17 cells followed by Tc1 effectors.

To generalize these findings, we systematically immuno-
phenotyped TILs in CT26 colon cancer treated by a single 
intratumoral injection of DX, which significantly retarded  
tumor growth (Fig. 3 A). Indeed, the majority of IL-17A+ 
TILs were CD45+CD3bright. They failed to express CD4, but 
were positively stained with anti-TCR –specific antibodies 
(Fig. S2 A). Consistently, chemotherapy dramatically increased 
the frequency of IFN-–producing CD8+ T lymphocytes 
(Tc1; Fig. 3 B) and IL-17A–producing  T cells ( T17; 
Fig. 3 C) in the tumor microenvironment. Next, we moni-
tored transplantable TS/A mammary carcinomas treated with 
local radiotherapy, which operates in a T cell–dependent 
manner (Apetoh et al., 2007). Irradiation of TS/A tumors led 
either to tumor regression or to no response, and hence tumor 
progression (Fig. 3 D). An accumulation of both Tc1 (Fig. 3 E) 
and  T17 (Fig. 3 F) lymphocytes was found in those  
tumors that responded to radiotherapy, but not in those that 
continued to progress or in untreated controls. Importantly, in 
each of the three tumor models that we tested, a clear correla-
tion was observed between tumor invading  T17 and Tc1 
cells (Fig. 3 G).

 T17 TILs were preponderantly CD44+ CD62L CD69+ 
and Granzyme B+. They did not express CD24, c-kit, NKG2D, 
CD27 (a thymic determinant for IFN-–producing   
T cells; Ribot et al., 2009), SCART2 (a specific marker for 
peripheral IL-17–producing cells which can be down-regulated 
upon activation; Kisielow et al., 2008), or CD122 (a marker 
for self antigen-experienced  T cells with potential to pro-
duce IFN- (Jensen et al., 2008; unpublished data). FACS in-
dicated that 60% of  T17 used V4 chain (nomenclature 
of V genes according to Heilig and Tonegawa [1986]), but 
expression of V1 and V7 chain was rarely found (Fig. S2 B). 
We then sorted V1V4V7  T17 TILs (Fig. S2 C) and 
performed single-cell PCRs and sequencing (Pereira and 
Boucontet, 2004) to examine their V chain usage. The ma-
jority of these cells (21 of 23 clones) contained functional 

RESULTS
A marked Th1 pattern 8 d after chemotherapy
Anthracyclines induce immune responses that culminate in 
CD8+ T cell– and IFN-/IFN-R–dependent antitumor  
effects (Ghiringhelli et al., 2009). To further study chemo-
therapy-induced immune effectors at the site of tumor retar-
dation, we performed quantitative RT-PCR to compare the 
transcription profile of 40 immune gene products expressed 
in MCA205 tumors, which were controlled by the anthracy-
cline doxorubicin (DX) 8 d after treatment (Fig. 1 A, top), 
with that of progressing, sham-treated (PBS) tumors (Fig. 1 A, 
bottom). Several Th1-related gene products were specifically 
induced in regressing tumors (Fig. 1 B). In particular, the Th1 
transcription factors Eomes and Tbx21 (also called T-bet) and 
their target, IFN-, were increased by 4–5 fold in DX versus 
PBS-treated tumors (Fig. 1 C, left). Unsupervised hierarchical 
clustering indicated that IFN- production correlated with 
that of the quintessential Th1 transcription factor, Tbx21.  
By day 8, the protein levels of IFN- also increased in 
DX-treated MCA205 sarcomas (Fig. 1 D, left). Other sur-
rogate markers of Th1 responses (lymphotoxin-, Ccl5, 
Cxcl10, Cxcl9, and TNF) were also significantly induced at 
the mRNA level after DX treatment (Fig. 1, B and C, left). 
Another set of gene products was also overexpressed in the 
context of DX-induced tumor regression. These genes en-
coded IL-7R, IL-21, AhR, Cxcl2, and Foxp3, suggesting 
that inflammation and/or tissue repair occurred in the  
tumor bed (Fig. 1, B and C, right). Indeed, by day 3 after 
chemotherapy, the protein levels of the inflammatory cytokine 
IL-17 were significantly increased within tumor homogenates 
(Fig. 1 D, right).

Reinforcing this finding, we found that AhR, a sensor of 
small chemical compounds, is involved in the success of  
anthracycline-based therapy in this model. AhR is recognized 
as a transcriptional regulator for the optimal IL-17–associated 
immune response, promoting the differentiation and/or mainte-
nance of IL-17–producing cells (Esser et al., 2009). CH-223191 
is a pure antagonist of AhR because it does not have any ago-
nist actions up to 100 µM (Kim et al., 2006). Blocking AhR 
with CH-223191 markedly reduced the efficacy of DX on 
established cancers in vivo (Fig. S1 A). This contrasts with the 
observation that CH-223191 had no cell autonomous effects 
on the tumor cells, alone or in combination with anthracy-
clines (Fig. S1 B).

DX (compared with PBS) induced a threefold increase in 
the proportions of both IFN-– and IL-17–producing  
tumor-infiltrating lymphocytes (TILs) as tested by flow cytom
etry (FACS; Fig. 1 E). To identify the cellular source of IFN- 
and IL-17, TILs were immunophenotyped by cell surface 
staining and intracellular detection of the cytokines with 
FACS. Careful analyses revealed that the major source of 
IFN- was CD8+ T cells, whereas that of IL-17 was mostly 
TCR + T cells rather than CD4+ Th17 cells 8 d after che-
motherapy in MCA205 sarcomas (Fig. 1 F). We further ana-
lyzed the IFN- and IL-17 production by each subset of 
TILs. CD4+ T cells could secrete IFN-, but rarely IL-17. 
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Figure 1.  Th1 and Th17 immune response in tumors after chemotherapy. (A) Mice bearing MCA205 tumors were treated with PBS (solid symbols) or 
DX (open symbols) intratumorally at day 7 after tumor inoculation. Tumor growth was monitored at the indicated time points. (B and C) 8 d after chemo-
therapy (day 15 after tumor inoculation), tumor homogenates in PBS and DX groups were tested by quantitative RT-PCR (qRT-PCR). (B) Fold changes of gene 
expression are shown as a heat map. (C) Th1- and Th17-related gene expression in DX versus PBS groups (with a fold change >2) are listed. (D) Measurements 
of IFN- and IL-17A protein in tumor homogenates by ELISA at the indicated time points. (E and F) Single-cell suspension of MCA205 tumors (day 8 after DX) 
were analyzed by FACS. (E) Expression of IFN- and IL-17A in TILs was tested by intracellular staining gated on live, CD45+ and CD3+ cells. (F) IFN-+ and  
IL-17A+ cells were gated, and the proportions of CD3+ CD8+ cells and CD3+ TCR + cells were examined in DX-treated tumors. A typical dot plot analysis (left) 
and the absolute numbers of Th17 and  T17 cells in the whole tumors (right) are shown. (G) IFN- and IL-17A production by total CD4+, CD8+, and TCR + 
TILs. Representative FACS plots in DX-treated tumors (left) and the percentages in PBS- or DX-treated tumors (right) are shown. Each group contained at least 
five mice, and each experiment was performed at least twice, yielding similar results. Graphs depict mean ± SEM of fold change of gene expression (C), pro-
tein content (D), percentages, or absolute numbers of positive cells (E and G). *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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abolished antigen-specific T cell priming in re-
sponse to dying cells, yet had no negative effect 
on T cell priming by OVA holoprotein admixed 
with CpG oligodeoxynucleotides (Fig. 5 A, left). 
Consistently, a neutralizing anti–IL-17A anti-
body, but not the isotype control Ig (CIg), 
markedly impaired the OVA-specific T cell in-
duced by OX-treated EG7 (Fig. 5 A, right). Be-
cause Th1/Tc1 immune responses against dying 

tumor cells mediate a prophylactic protection against rechal-
lenge with live tumor cells (Apetoh et al., 2007; Ghiringhelli 
et al., 2009), we addressed the functional relevance of the  
IL-17A–IL-17RA pathway in this setting. Subcutaneous in-
jection of mitoxantrone (MTX)-treated MCA205 sarcoma 
cells could protect WT mice, but not athymic nude mice, 
against rechallenge with live MCA205 tumor cells (Fig. 5 B). 
The efficacy of this vaccination was attenuated in IL-17RA/ 
mice. Because IL-17 was not significantly produced by CD4+ 
or CD8+ T cells, neither in tumor beds during chemotherapy 
(Fig. 1 G) nor in the tumor draining LNs (unpublished data), 
we refrained from investigating Th17 cells and rather focused 
on  T and NKT cells as potential IL-17 producers (Mills, 
2008; Pichavant et al., 2008) that might contribute to the anti
cancer vaccination by dying tumor cells. Although CD1d/ 
mice, which lack all NKT population (Godfrey et al., 2010), 
were undistinguishable from WT controls in their ability to 
resist live tumor cells rechallenge after a dying tumor cell vac-
cine, V4/6/ mice (Sunaga et al., 1997) exhibited a reduced 
capacity to mount this anticancer immune response (Fig. 5 B). 
These results suggest that IL-17A, IL-17R, and  T17 cells 
all play a partial role in the afferent phase of the immune re-
sponse against dying tumor cells, which includes T cell prim-
ing for IFN- production.

IL-1–dependent, but not IL-23-dependent, activation  
of  T lymphocytes
The IL-1–IL-1R1 pathway is mandatory for eliciting Tc1 
immune responses and for the efficacy of chemotherapy 
(Ghiringhelli et al., 2009). Moreover, we found an IL-1– 
related gene expression signature after chemotherapy in tumor 
beds (Fig. 1 B), prompting us to address its role in the activa-
tion of  T17 cells.

To explore the molecular requirements for  T17 activa-
tion in situ, we sorted  T cells from the skin-draining LNs 

V6 rearrangements identical to those found in fetal   
T cells (Lafaille et al., 1989). These experiments show that most 
 T17 TILs express V4 or V6 chains (Fig. S2, D and E).

Thus, chemotherapy and radiotherapy could trigger the 
accumulation of cytokine producing TILs in the tumor bed. 
This applies to distinct subsets of  T cells that rapidly invaded 
tumor and become IL-17 producers, correlating with the accu
mulation of Tc1 cells, which contribute to the chemotherapy-
induced anticancer immune response.

The IL-17A–IL-17R pathway is involved  
in the immunogenicity of cell death
Because both Tc1 and  T17 cells accumulated within tumors 
after chemotherapy or radiotherapy in a coordinated fashion, 
we determined whether neutralizing their signature cytokines 
IFN- and IL-17A could mitigate the efficacy of anticancer 
therapies. Antibody-mediated neutralization of either IFN- 
or IL-17A negatively affected the growth-retarding effect of 
DX against MCA205 tumors (Fig. 4 A). The mandatory role 
of the IL-17A–IL-17RA pathway was confirmed using neu-
tralizing anti–IL-17RA antibodies and IL-17A/ mice in 
the same tumor model (Fig. 4 B), in DX-treated MCA2 sar-
comas (Fig. 4 C), as well as in OX-treated, OVA-expressing 
EG7 thymomas or CT26 colon cancers (Fig. 4, D and E).

To rationalize the sequential recruitment of  T17 and 
Tc1 cells into the tumor bed after chemotherapy, we hypoth-
esized that  T17 might act as helper cells for Tc1 priming. 
We previously reported that specific antitumor immune re-
sponses rely on Tc1 cells primed by tumor cells undergoing 
immunogenic cell death by using a system in which IFN- 
production by OVA-specific T cells could be triggered by 
OX-treated EG7 cells (Ghiringhelli et al., 2009). We used this 
system to check whether IL-17 is involved in initiating the 
specific antitumor response, comparing normal WT with  
IL-17RA/ mice. In this assay, the absence of IL-17RA fully 

Figure 2.   T17 cells preceded Tc1 CTL into tumors 
after chemotherapy. (A) The percentages of IL-17– and 
IFN-–producing cells among all tumor infiltrating  T 
cells and CD8+ T cells, respectively, are plotted before and 
at the indicated time points after tumor inoculation. Mice 
were treated with PBS (filled symbols) or DX (open sym-
bols) at day 7. (B) Ki67 expression on  T and CD8+ TILs 8 d  
after treatment. (C) The percentages of  T17 and Tc1 
among all CD3+ TILs at the indicated time points after 
tumor inoculation. DX was given at day 7. These experi-
ments were performed twice on 5–10 tumors at each time 
point. *, P < 0.05; **, P < 0.01.
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Thus, BM-derived DCs (BMDCs) that had been loaded with 
DX-treated MCA205 (Fig. 5 C; or CT26, not depicted), but 
not with live tumor cells, produced IL-1 and markedly stim-
ulated the release of IL-17 and IL-22 by  T cells (Fig. 5 C). 
As a quality control for in vitro–generated DCs, the expres-
sion of CD11c, MHC class II, CD11b, and F4/80 was as-
sessed. Only qualified DC preparations that contain functional 
DCs (>80% CD11c+MHCII+) rather than macrophages 
(>70% CD11b+F4/80+CD11c) could activate  T cells for 
IL-17A production when they encountered DX-treated tumor 
cells. CD11b+Gr1+ neutrophils reportedly produce IL-17 and 
promote downstream IL-12/IFN- contributing to reperfu-
sion injury (Li et al., 2010). Interestingly, CD11b+Gr1+ cells 
sorted from DX-treated tumor beds bearing the IL-1 mes-
senger RNA failed to secrete IL-1 or IL-17A protein and 
failed to activate  T cells for IL-17A production in vitro 
(unpublished data). IL-17 production by  T cells was de-
pendent on IL-1 because the IL-1R1 antagonist IL-1RA 
entirely abrogated the DC/ T cell cross talk in the presence 

of naive mice (around 1–2% of the LN T cell pool). Among 
these  T cells, 70% harbored the V4 TCR. Moreover, 
these cells vigorously produced IL-17A (but not IFN-) upon 
stimulation with PMA/ionomycin (Fig. S2 F; Do et al., 2010). 
In contrast to Th17 cells (Ivanov et al., 2006), LN-resident  
T cells failed to produce IL-17 in response to TGF- or IL-6 
alone, or in combination with IL-1. However, they potently 
secreted IL-17 and IL-22 in response to the combined stimu-
lation of IL-1 plus IL-23 (unpublished data; Sutton et al., 
2009). TCR engagement also synergized with IL-1 (and to 
a lesser extent with IL-23) to trigger IL-17 and IL-22 secre-
tion by LN-resident  T cells (unpublished data). It is note-
worthy that these stimuli specifically activated IL-17A, but 
not IFN- production by  T cells. Because  T17 cells were 
activated (as indicated by their Ki67+, GzB+, CD69+, and IL-17+ 
phenotype) after chemotherapy, we addressed whether dying  
tumor cells could directly promote the activation of  T17. 
Although DX-treated MCA205 cells failed to directly in-
duce IL-17 secretion by  T cells, they did so indirectly. 

Figure 3.  Recruitment of both Tc1 and  T17 cells in CT26 and TS/A tumors that correlate with better tumor control. (A–C) CT26 colon cancer 
treated with anthracyclines. (A) Tumor size before and 8 d after treatment with PBS (filled symbols) or DX (open symbols). (B) The percentage of CD8+ T cells 
among CD3+ cells and of IFN-–producing cells among CD8+ T cells. (C) The percentage of  T cells among CD3+ cells and of IL-17A–producing cells among 
CD3+  T cells. Data are presented as mean ± SEM with five tumors/group. (D–F) TS/A mammary cancer treated with x rays. (D) Established TS/A tumors were 
treated with local irradiation (open symbols) on day 10. Mice were segregated into nonresponders (tumor progression [TP], triangles) and responders (tumor 
regression [TR], circles) 22 d after radiotherapy (n = 5). (E) The percentage of CD8+ T cells among CD3+ cells and of IFN--producing cells among CD8+ T cells; 
(F) The percentage of  T cells among CD3+ cells and of IL-17A–producing cells among CD3+  T cells are indicated as mean ± SEM. (G) The correlation 
between the percentages of  T17 and Tc1 TILs in all tumors (treated or not) was plotted for MCA205, CT26, and TS/A tumors (each dot representing one 
mouse). Data are representative of two to three independent experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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 T lymphocytes are indispensable  
for the immune-dependent effects  
of chemotherapy
To further evaluate the contribution of   
T cells to the therapeutic action of DX on es-
tablished MCA205 sarcomas, such tumors 
were implanted into age- and sex-matched 
WT, TCR /, V4/6/ mice, and then 
subjected to chemotherapy. As compared with 
WT controls, the absence of the TCR  chain, 
as well as that of V4 and V6  T cells, 
greatly reduced the efficacy of chemotherapy 
(Fig. 6 A). At day 8 after chemotherapy, when 
 T17 and Tc1 massively infiltrated tumor 
beds in WT mice, these cytokine-producing 
TILs were either absent or greatly reduced in 
V4/6/ mice (Fig. 6 B), suggesting that the 
presence of V4 and V6  T cells are critical 
for the optimal Tc1 response in tumor beds.

Expression of CCR6 is a phenotypic and functional hall-
mark of Th17 cells (Reboldi et al., 2009) during some inflam-
matory processes. We therefore analyzed the role of CCR6 in 
the efficacy of chemotherapy. Because CCL20 was detectable 
in tumor tissues before and after chemotherapy (unpublished 
data), we assessed whether  T17 cells could be recruited in 
a CCL20/CCR6-dependent manner. The tumoricidal activ-
ity of DX against CT26 was not affected by repetitive sys-
temic injections of neutralizing anti-CCL20 antibody before 
and during anthracycline treatment (Fig. S3 B). Consistently, 
anthracycline treatment against established MCA205 sarcoma 
remained efficient in CCR6 loss-of-function mice. Moreover, 
CCR6 deficiency did not influence tumor infiltration by  
T17 (unpublished data). Therefore, V4 and V6  T cells 
contribute to the immune-mediated action of anticancer 
agents in a CCR6-independent fashion.

Next, we determined the contribution of adoptively trans-
ferred  T cells to the efficacy of chemotherapy. The infusion 
of  T cells derived from skin-draining LNs (from naive 

of dying cells. The neutralization of IL-18R, IL-23, or IL-23R 
failed to abolish IL-17 production by  T cells co-cultured 
with DCs (Fig. 5 D). IL-22 production was completely abol-
ished by blocking the IL-1–IL-1R or IL-23–IL-23R path-
ways but not affected by IL-18R blockade. Interestingly, 
chemotherapy lost part of its anticancer activity in IL-1R1–
deficient mice, yet maintained its efficacy in mice treated with 
IL-23p19–neutralizing antibodies or in IL-23p19/ mice 
(Fig. 5, E–G). IL-1–activated  T cells produced IL-17 and 
IL-22 (Fig. 5, C and D). However, IL-22 did not play an es-
sential role in the antitumor effects promoted by chemother-
apy (Fig. S3 A). It is of note that the antibody we used in this 
experiment could block the bioactivity of IL-22 in a lung 
bacterial infection model (Aujla et al., 2008), and IL-22 
mRNA in the bulk TILs was below the detection limit of 
quantitative RT-PCR. Collectively, these results underscore 
the importance of IL-1 and IL-17 for the immune-dependent 
anticancer effects of chemotherapy, yet suggest that both IL-23 
and IL-22 are dispensable for such effects.

Figure 4.  A mandatory role for the IL-17A–IL-
17RA pathway in the efficacy of chemotherapy. 
(A) Mice bearing established MCA205 sarcomas were 
treated with local PBS (filled symbols) or DX (open 
symbols) 7 d after tumor inoculation and with sys-
temic neutralizing antibodies against mouse IFN- 
(left), IL-17A (right), or control Ig (CIg) i.p. every 2 d  
(3 injections, 200 µg/mouse) starting on the day of DX. 
(B–E) WT (circles or squares) or IL-17A/ (triangles) 
mice bearing established MCA205 sarcomas (B),  
MCA2 (C), EG7 (D), or CT26 (E) tumors were treated with 
PBS (B-E, solid symbols), DX (B and C, open symbols), or 
OX (D and E, open symbols) together with systemic 
administration of neutralizing antibodies against IL-
17RA (squares) or CIg. Tumor sizes are plotted as 
mean ± SEM for 5–15 mice/group, and each experi-
ment was repeated at least 2 times, yielding similar 
results. *, P < 0.05; **, P < 0.01.
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Figure 5.  Role of  T17 in the priming of T cell responses during an immunogenic cell death and regulation by IL-1. (A) OX-treated EG-7 
cells were inoculated in the footpad of WT versus IL-17RA/ mice (n = 5; left) along with anti–IL-17A neutralizing antibody (or CIg; right panel). OVA-
specific IFN- secretion by draining LN cells was measured in vitro by ELISA after stimulation with OVA protein (1 mg/ml). OVA/CpG immunization was 
used as positive control. (B) Immunization with MTX-treated MCA205 and rechallenge with a tumorigenic dose of live MCA205 were performed at day 0 
and day 7, respectively in WT C57Bl6 (n = 10), nude (n = 10), V4/6/ (n = 15), IL-17RA/ (n = 8), and CD1d/ (n = 6) mice. The percentages of tumor-
free mice were scored at the indicated time points. Experiments in A and B were performed twice with similar results. (C) Production of IL-1, IL-17A, and 
IL-22 from mixed co-cultures of LN-derived  T cells and/or BMDCs loaded or not loaded with live or DX-treated MCA205 was monitored by ELISA. Data 
are shown as mean ± SEM (D) Co-cultures of DX-treated MCA205/BMDC/ T were performed in the presence of 20 µg/ml IL-1RA (Amgen), anti–IL-23, or 
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When exploring the source of IL-17A 
elicited by dying tumor cells, we found that 
 T cells were the quantitatively and func-
tionally most important IL-17A producers, 
based on several observations. First, in the 
context of chemotherapy, IL-17–producing 
cells accumulated in tumors, and most of 
them were positive for  T markers. Sec-
ond, antigen-specific CD4+ T cells in LNs 

draining the dying tumor cells showed a Th1 (IL-2 and 
IFN-) instead of a Th17 cytokine pattern (Ghiringhelli et al., 
2009). CD4+ and CD8+ TILs were polarized to produce 
IFN- instead of IL-17. Also, IL-6 and TGF-, two key regu-
latory cytokines essential for the differentiation of Th17 cells 
(Ivanov et al., 2006; Veldhoen et al., 2006), were dispensable 
for the efficacy of chemotherapy or vaccination with dying 
tumor cells (Fig. S3, C and D), suggesting that Th17 cells may 
not be required for the anticancer immune response after 
chemotherapy. Third, when popliteal LNs were recovered 
from mice that had been injected with dying (but not live) 
tumor cells through footpad, the restimulation of LN-resident 
cells using anti-CD3 plus IL-23 readily enhanced IL-17 
production (unpublished data), a feature common to memory 
T cells (van Beelen et al., 2007), innate NKT (Rachitskaya  
et al., 2008), and  T cells (Sutton et al., 2009). Fourthly,  
the subset of NKT cells capable of producing IL-17 in LNs 
(CD103+CD4NK1.1CCR6+CD1d tetramer+; Doisne et al., 
2009) did not appear to be specifically triggered by dying 
cells in vivo (unpublished data). Moreover, CD1d/ mice, 
which lack NKT cells, were indistinguishable from WT mice 
when the efficacy of chemotherapy was assessed in prophy-
lactic vaccination settings. Fifthly, knockout of V4/6 or 
TCR  attenuated the protective antitumor vaccination with 
dying tumor cells and reduced the efficacy of the anthra
cycline-based chemotherapy on established tumors. Finally, 
the adoptive transfer of WT  T cells into IL-17A/ hosts 
could restore the clinical response to chemotherapy and improve 

WT mice) into tumor beds 2 d after DX potentiated the 
growth-retarding effect of chemotherapy, yet had no effect 
on PBS-treated tumors (Fig. 7 A). Importantly, synergistic 
antitumor effects of DX and adoptively transferred   
T cells were lost when the  T cells were obtained from 
IL-17A/ or IL-1R1/ donors (Fig. 7, B and C), emphasiz-
ing the role of IL-1 responses and IL-17 production in the 
function of  T cells. Moreover, the adoptive transfer of WT  
 T cells could restore the antitumor efficacy of chemotherapy 
in IL-17A–deficient mice (Fig. 7 D). Collectively, these results 
emphasize the important contribution of  T17 cells to the 
immune-dependent effects of anticancer chemotherapy.

DISCUSSION
Our results highlight a role of  T cells, particularly the  
V4- and V6-expressing subsets that produce the effector 
cytokine IL-17A, in the anticancer immune response induced 
by cytotoxic chemotherapeutics. We demonstrated that the 
IL-17A–IL-17RA signaling pathway is required for the priming 
of IFN-–secreting, antigen-specific T cells by tumor cells ex-
posed to chemotherapy. This tumor-specific, Tc1-mediated im-
mune response is essential for anticancer immunity because the 
protective effect of dying tumor cell vaccination is lost in athymic 
nude mice or when CD8+ T cells are depleted (Casares et al., 
2005), and chemotherapy fails to work when the IFN-–IFN-
R system is blocked (Ghiringhelli et al., 2009). Accordingly, we 
found that the absence of the IL-17A–IL-17RA pathway reduced 
the capacity of mice to mount a protective antitumor response.

IL-23R neutralizing antibodies, or 10 µg/ml IL-18BP. Experiments in C and D were repeated three to six times. (E and G) Tumor size was monitored in WT 
(circles), IL-1R1/ (diamonds), and IL-23p19/ (squares) mice treated with PBS (filled symbols) or DX (open symbols; E and F), or in WT mice treated 
with systemic anti–IL-23 neutralizing antibodies (squares) or CIg (circles; G). Data are representative of 2 experiments with 6–10 mice/group. *, P < 0.05; 
**, P < 0.01; ***, P < 0.001.

 

Figure 6.  The therapeutic activity of anthra-
cyclines and tumor colonization of Tc1 depend 
upon V4 V6  T cells. (A) WT, TCR /, or 
V4/6/ mice with established MCA205 tumors 
were injected intratumorally with PBS or DX. Tumor 
size was measured at the indicated time and plotted 
as mean ± SEM (n = 8/group). (B) Percentage of IL-
17A– or IFN-–expressing cells within CD3+ TCR+ 
and CD3+ CD8+ TILs, respectively, in WT or V4/6/ 
mice. A typical dot plot is shown (left) and statisti-
cal analysis was performed with combined data 
from two independent experiments (right). *, P < 
0.05; ***, P < 0.001.
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results imply a causal relationship between the presence of  
T17 cells and the recruitment of antitumor effector Tc1 cells 
into tumor beds.

 T cells represent a major source of IL-17 during lung 
infection by Mycobacterium tuberculosis (Lockhart et al., 2006; 
Umemura et al., 2007) and liver infection by Lysteria (Hamada 
et al., 2008).  T cell-derived IL-17 is critical for the recruit-
ment of neutrophil recruitment into the peritoneal cavity  
after Escherichia coli inoculation (Shibata et al., 2007).   
T cells can be directly stimulated through TLR2, TLR1, and/or 
dectin-1 in response to Mycobacterium tuberculosis and Candida  
albicans to produce IL-17 in synergy with IL-23 (Martin  
et al., 2009). As to the mechanisms that link chemotherapy-
elicited tumor cell death to the accumulation of  T17 cells, 
our data suggest that IL-1 acts as a major trigger. One previ-
ous report demonstrated the pivotal function of IL-1 in 
regulating  T17 cells in experimental autoimmune enceph-
alomyelitis (EAE; Sutton et al., 2009). In that model, IL-1 
synergized with IL-23 to promote IL-17 production by  T, 
which in turn, stimulated the differentiation of pathogenic 
Th17 cells.

Our data can be interpreted to support the contention 
that the context and immune orchestration at the site of cell 
death may be critical for an optimal contribution of the im-
mune system to the efficacy of anticancer therapies. The pres-
ent data introduces the idea that  T17 cells are part of the 
innate immune response that facilitates the subsequent cognate 
anticancer T cell responses. It remains a formidable challenge for 
investigating further how the innate and cognate immune effec-
tors develop a dialog within the three-dimensional architec-
ture of the tumor composed of dying and live tumor cells, as 
well as multiple stromal elements. Should  T17 cells also be 
recruited into human tumor beds after chemotherapy, it would 
be of the utmost importance to determine their TCR V  
usage to propose combination therapy of phosphoantigens 
(for V2+) or other ligands or innate cytokines (for V2) and 
anthracyclines to increase therapeutic benefit in neoadjuvant 
settings or prevent metastases.

MATERIALS AND METHODS
Mice. WT C57BLl/6 (H-2b) and BALB/c (H-2d) mice aged between 7 and 
12 wk were purchased from Harlan. Nude mice were bred in the animal facil-
ity of Institut Gustave Roussy. TCR /, IL-1R1/, and IL-17RA/(H-2b) 
mice were bred at Cryopréservation, Distribution, Typage, et Archivage Ani-
mal (Orléans, France) by B. Ryffel (CNRS, Orleans, France) and P. Pereira 
(Institut Pasteur, Paris, France; TCR / was bred in the same manner).  
IL-23p19/ and IL-17A/ (H-2b) were provided by M.J. Smyth (Peter Mac-
Callum Cancer Centre, Victoria, Australia). V46/ mice (H-2b) were provided 
by G. Matsuzaki (University of the Ryukyus, Okinawa, Japan) and K. Ikuta 
(Kyoto University, Kyoto, Japan). CD1d/ and CCR6/ (H-2b) mice were 
bred at St. Vincent de Paul Hospital AP-HP (Paris, France) and provided by 
K. Benlagha. The experimental protocols were approved by the Animal Care 
and Use Committee in the animal facility of Institut Gustave Roussy.

Cell lines and reagents. CT26 (H-2d) colon cancer, MCA205 (H-2b) and 
MCA2 (H-2d) sarcoma, TS/A mammalian cancer (H-2d), and EG7 thymoma 
(H-2b) were cultured in RPMI 1640 containing 10% FBS, 2 mM l-glutamine, 
100 IU/ml penicillin/streptomycin, 1 mM sodium pyruvate, and 10 mM 

the response in WT hosts, and this latter effect was lost 
when  T cells from IL-17A/ (rather than WT) donors 
were used.

In the context of immunogenic chemotherapy, it appears 
clear that IL-1 plays a major role in stimulating IL-17 pro-
duction and the anticancer function of  T cells. The key 
role of IL-1 in regulating  T cells function was shown by 
using IL-1RA in co-cultures of DCs/ T cells in the pres-
ence of dying tumor cells. Also,  T cells that lack IL-1R1 
lose the capacity to amplify the tumoricidal action of anthra-
cyclines. Interestingly, inflammasome-dependent IL-1 secre-
tion from DCs was also found to be mandatory for the 
polarization of CD8+ T cells toward a Tc1 pattern (Ghiringhelli 
et al., 2009), suggesting that a connection between DCs,  
T17 cells, and Tc1 cells might be important for optimal anti-
cancer immune responses. We noticed a strong correlation 
between  T17 and Tc1 cells after chemotherapy in three 
different tumor models. We also noticed that the production 
of IL-17 production preceded that of IFN- by TILs. It is well 
possible that besides helping the development of Tc1 response, 
 T17 cells might enhance the chemoattraction of effector 
Tc1 into the tumor beds. These results are compatible with 
observations obtained in a cancer-unrelated context, micro-
bial infection, in which  T17 associated with Th1 responses 
exert protective immune response (Umemura et al., 2007).  
As IL-17 could not directly induce IFN- production or 
enhance proliferation of CD8+ T cells (unpublished data), our 

Figure 7.  Role of  T cell–derived IL-17A during chemotherapy. 
CD3+ TCR + or CD3+ TCR  T cells from WT mice (A), CD3+ TCR + T cells 
from IL-17A/ (B), or IL-1R1/ (C) mice were injected intratumorally 
into MCA205-bearing WT mice (A–C) or IL-17A/ mice (D) 2 d after PBS 
or DX treatment. Tumor sizes are plotted as mean ± SEM for five mice/
group. Experiments were repeated two to three times with similar results. 
*, P < 0.05; **, P < 0.01.
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IL-17A or CIg was injected i.p. 5 d later, the popliteal LN cells were har-
vested, seeded in a 96-well plate at 3 × 105/well and restimulated with 1 mg/ml 
OVA protein. IFN- secretion was measured by OptEIA Mouse IFN- 
ELISA kit (BD). MCA205 cells were treated with 2 µM MTX overnight, 
washed thoroughly, and injected into left flank s.c. at 3 × 105/mouse. PBS 
was used as control. Mice were rechallenged with 5 × 104 live MCA205 cells 
in the right flank 7 d later. Tumor growth was monitored every 2–3 d.

DC-tumor mixed lymphocyte cultures. DCs were propagated in Iscoves’s 
medium (Sigma-Aldrich) with J558 supernatant (40 ng/ml GM-CSF), 
10% FCS, 100 IU/ml penicillin/streptomycin, 2 mM l-glutamine, 50 µM 
2-mercaptoethanol (Sigma-Aldrich) and used between day 8 and 12 when the 
proportion of CD11c/MHC class II+ cells was >80%. In mixed co-cultures, 
DCs were seeded at 105/100 µl/well in U-bottom 96-well plates. Tumor cells 
were treated overnight with 25 µM DX or left untreated, washed, and used 
at 7.5 × 104/100 µl/well. 2 × 104/50 µl  T cells were added 12 h later.  
Supernatant was collected 36 h later.

Statistical analyses of experimental data. All results are expressed as 
mean ± SEM, or as ranges when appropriate. For two groups, normal distri-
butions were compared by unpaired Student’s t test. Non-normal samplings 
were compared using the Mann-Whitney test or Wilcoxon matched paired 
test when appropriate. The log-rank test was used for analysis of Kaplan-
Meier survival curve. Statistical analyses were performed using Prism 5 soft-
ware (GraphPad). P values of <0.05 were considered significant.

Online supplemental material. Fig. S1 shows the effect of AhR antago-
nist on the efficacy of chemotherapy (DX). Fig. S2 depicts the V chain usage 
of tumor-infiltrating  T17 and  T cells in the LNs of naive mice. Fig. S3 
shows the effect of neutralizing IL-22, CCL20, IL-6, or blocking TGF- on 
the efficacy of chemotherapy or vaccine. Online supplemental material is avail-
able at http://www.jem.org/cgi/content/full/jem.20100269/DC1.
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