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The imprint of the Slave Trade in an African American population: mitochondrial DNA, 
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Abstract 

Background 

Retracing the genetic histories of the descendant populations of the Slave Trade (16
th

-19
th

 

centuries) is particularly challenging due to the diversity of African ethnic groups involved 

and the different hybridisation processes with Europeans and Amerindians, which have 

blurred their original genetic inheritances. The Noir Marron in French Guiana are the direct 

descendants of maroons who escaped from Dutch plantations in the current day Surinam. 

They represent an original ethnic group with a highly blended culture. Uniparental markers 

(mtDNA and NRY) coupled with HTLV-1 sequences (env and LTR) were studied to establish 

the genetic relationships linking them to African American and African populations. 

 

Results 

All genetic systems presented a high conservation of the African gene pool (African ancestry: 

mtDNA=99.3%; NRY=97.6%; HTLV-1 env=20/23; HTLV-1 LTR=6/8). Neither founder 

effect nor genetic drift was detected and the genetic diversity is within a range commonly 

observed in Africa. Higher genetic similarities were observed with the populations inhabiting 

the Bight of Benin (from Ivory Coast to Benin). Other ancestries were identified but they 

presented an interesting sex-bias. Whilst male origins spread throughout the north of the bight 

(from Benin to Senegal), female origins were spread throughout the south (from the Ivory 

Coast to Angola).  

 

Conclusions 

The Noir Marron are unique in having conserved their African genetic ancestry, despite major 

cultural exchanges with Amerindians and Europeans through inhabiting the same region for 

four centuries. Their maroon identity and the important number of slaves deported in this 



region have maintained the original African diversity. All these characteristics permit to 

identify a major origin located in the former region of the Gold Coast and the Bight of Benin; 

regions highly impacted by slavery, from which goes a sex-biased longitudinal gradient of 

ancestry.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Background 

The genetic dispersal that occurred during the Slave Trade remains complex, due to the large 

diversity of populations involved. Modern African American populations show this genetic 

diversity, inherited from African, European and Amerindian populations. Nine to ten million 

Africans were deported to the American colonies during the 16
th

-19
th

 centuries. In the 

Guianese regions [1], between Brazil and Venezuela, approximately 400,000 slaves arrived to 

work in the plantations from 1604 to 1815 for mainly Dutch, but also English, French and 

Portuguese Jew settlers. Although many of these slaves were shipped by the Dutch West 

Indische Compagnie (WIC, 1620-1674), which controlled several African trading posts 

notably in the Bight of Benin, most of them were sold by independent slavers who traded 

along the Atlantic coast of Africa. Historical reports show widespread origins of the enslaved 

working force in Guiana, ranging over the Atlantic African coast from Senegal to Angola: 

12% of the slaves came from Senegambia (present-day Senegal, Guinea-Bissau, Guinea), 

Sierra Leone and the Windward Coast (present-day Liberia and a part of the Ivory Coast), 

56% from the Gold Coast (the remaining part of the Ivory Coast and Ghana) and the Bight of 

Benin (present-day Togo, Benin and a part of Nigeria), 5% from the Bight of Biafra (the 

remaining part of  present-day Nigeria, Cameroon, Equatorial Guinea and Gabon), and 28% 

from South West Africa (present-day Angola) [2]. The slavers took advantage of this high 

cultural diversity, by breaking all ethnic and familial networks and by maintaining a sex-ratio 

(2/3 men and 1/3 women) to prevent rebellions during the Middle Passage (the crossing of 

Atlantic Ocean) and in the plantations. 

Despite these precautions, many slaves managed to escape from European oppression once on 

American soil, a phenomenon known as marooning. In Dutch Guiana, these maroons took 

refuge in the equatorial Amazonian forest, and reconstructed entire communities known as the 

Noir Marron (or Bushinengué) [3]. These escapes were favoured by conflicts between the 



Dutch and French, as was observed during the French embargo of Dutch Guiana in 1712. 

They rapidly adapted themselves to this new environment, to represent a real threat for the 

colonial power, forcing the government to sign peace treaties. Between 1760 and 1809, six 

Noir Marron communities were officially recognized: Saramaka, Ndjuka, Aluku, Paramaka, 

Matawai and Kwinti [3]. From the beginning of the 19
th

 century to 1986 and the Surinamese 

civil war, they were often evicted from their territories and many of them were forced to take 

refuge in French Guiana. Despite these fluctuating conditions of life, the Noir Marron 

communities have prospered and their culture has asserted itself. Although the maroon 

identity is their cornerstone, cultural exchanges with Europeans and Amerindians have been 

intense. Large influences are detectable, for example, in their languages composed of English, 

Dutch, Portuguese or Arawak words, and in the structure of their villages, which are inherited 

from Amerindian knowledge. Today, living in Surinam and French Guiana, 50,000 

individuals constitute one of the last known American maroon society [3], and contribute to 

the large ethnic diversity of African American populations.  

The complex variety of African American communities has been well-studied, notably with 

genetic data revealing a high diversity among them. These populations can be highly admixed, 

as an Afro-Brazilian group from the State of Saõ Paulo whose origins are at: 26% African, 

62% European and 12% Amerindian [4]. They can have a balanced admixed profile, as the 

Brazilian community of Cameta: 53% African, 24% European and 23% Amerindian [5]. But 

some of them show a relatively preserved African ancestry, as the Gullah/Geechee in United 

States: 96% African and 3% European and 1% Amerindian [6]. Furthermore, these studies 

have shown that gene-flow within each group is often sex-biased, adding another level of 

complexity, as in the Afro-Venezuelian community of Birongo  which has a maternal African 

inheritance of 100% and a paternal European ancestry of 93% [5]. Concerning the Noir 

Marron population, a preliminary anthropological study on the Gm allotypic system showed a 



high degree of conservation of the African genetic contribution (95.1%) and very low levels of 

European (2.6%) and Amerindian (1.7%) contributions. This contradicts expectations based 

on their cultural exchanges and emphasises the importance of the maroon identity which has 

shaped their profile of admixture [7]. Moreover, this seems to constitute an original genetic 

characteristic in comparison with other African American populations inhabiting Latin 

America. Although the Gm system has a high power of discrimination between continental 

populations, it is limited for finer-scale analyses [8]. These original findings have to be 

confirmed by more powerful tools. Consequently, three genetic markers have been analysed in 

the present study, to obtain a better picture of the genetic structure of the Noir Marron. 

Uniparental lineages were determined through the analysis of mitochondrial DNA (mtDNA) 

and non-recombinant Y chromosome (NRY) haplotypes. Through the large number of African 

American and African populations typed for these systems, updated by original data from the 

Ivory Coast and Benin, the data available are informative to identify the ancestry of each 

haplotype observed [9, 10]. A third particular genetic system, the HTLV-1 retrovirus, has been 

explored because of its interest in human populations [11, 12]. Due to its ability to integrate 

itself in human genome, its low mutation rate and its mode of transmission (mainly mother-to-

child), it represents a relevant marker for infected groups. For some genotypes and especially 

concerning the Long Terminal Repeat (LTR) region, the phylo-geographical tree is highly 

discriminative [12]. This study is the first to combine these three genetic systems to study an 

African American population. In obtaining a better understanding of the genetic structure of 

the Noir Marron in French Guiana, the aim of this study is dual: (i) to confirm or not the 

highly preserved African gene pool obtained from the Gm allotypic system, which contradicts 

the cultural exchanges between the Noir Marron, Amerindians and Europeans, and (ii) to 

retrace the origin of this community by estimating the contribution of the historical African 

areas of slavery. 



 

Methods 

Population Samples 

Noir Marron from French Guiana 

One hundred and forty-two DNA extracts by phenol-chloroform protocol from Peripheral 

Blood Buffy Coat (PBBC) from individuals belonging to the four Noir Marron populations in 

French Guiana have been collected previously, during former collaborative studies in Saint-

Laurent du Maroni, Maripasoula and Papaichton in the Maroni river region [13-16]: 80 

Ndjuka, 41 Saramaka, 10 Aluku and 11 Paramaka. Genealogical data has been collected upon 

three generations to exclude related individuals. The locations of these populations are shown 

in Figure 1. Informed consent was obtained from all participants and the study was performed 

after authorisation from the Commission Nationale de l’Informatique et des Libertés (CNIL), 

the Comité Consultatif de Protection des Personnes dans la Recherche Biomédicale (Necker 

Hospital, Paris), l’Agence Française de Sécurité Sanitaire des Produits de Santé (AFSSAPS) 

and the Comité de Protection des Personnes Sud-Ouest et Outremer III. Because of the 

sampling heterogeneity and the non-significant genetic differences observed for the Gm 

system among the Noir Marron communities [7], a Fst test on uniparental markers, using 

Arlequin v.3.11 software [17], confirmed their genetic homogeneity (Fst<0.05, p-value=0.05, 

data not shown).  Thus, they are considered as a whole group in this study.[E1] 

 

Benin 

The Bight of Benin, also known as the “Slave Coast”, was one of the African areas most 

impacted by slavery between the 16
th

 and 19
th

 centuries, since more than 2,340,000 

individuals were deported from its coast [2]. Thousands of people were enslaved each year 

and sold to European slavers in trading posts, such as in Whydah. A large part of the wealth of 



the Dahomey and Oyo kingdoms was based on this trade [1]. Present-day Benin is composed 

of more than forty different ethnic groups, the most numerous being the Fon. In an aim to 

enlarge the databases of this crucial region, our sampling was composed of blood samples 

from 82 Fon and 68 Beninese, belonging to diverse ethnic groups subjected to slavery, such as 

the Yoruba, Tofin and Goun. Informed consent was obtained from all participants and the 

study was authorised by the ethics committee of the Faculté des Sciences de la Santé at the 

Université d’Abomey-Calavi in Benin. The locations of these populations are shown in Figure 

2. 

 

Ivory Coast 

This region was extensively used for slaves after the 18
th

 century.  Belonging to the historical 

areas of the Windward Coast and the Gold Coast, approximately 700,000 Africans living in 

this region were deported to the Americas during the Triangular Trade [1]. Today, about 60 

ethnic groups constitute the cultural diversity of the Ivory Coast. Among them, blood samples 

from 128 Ahizi and 62 Yacouba were collected filling a lack in the available databases. All 

samples were obtained with the informed consent of the participants. The locations of these 

two populations are shown on Figure 2.[E2] 

 

Laboratory methods 

mtDNA 

Maternal lineages were determined by a two-step procedure. The entire HVS-I (positions 

16012-16400), the intermediate region (positions 16401-72) and part of HVS-II (positions 73-

263) of the mtDNA control region were sequenced following the protocol described 

previously [18]. A first alignment step with rCRS [19] was made using BioEdit v.7.0.9.0, to 

determine a preliminary haplogroup. Twenty-seven informative Single Nucleotid 



Polymorphisms (SNPs) on the coding region (positions 10873, 13276, 13789, 13470, 10810, 

12950, 3594, 13710, 10400, 9818, 11899, 12049, 14088, 13485, 14034, 13803, 15939, 4158, 

3693, 13958, 10086, 8618, 14905, 4218, 2352, 750, 7851) were typed by minisequencing 

SNaPshot® (PE, Applied Biosystems). All data were obtained on an ABI PRISM 3730 

sequencer (PE, Applied Biosystems). The final haplogroup assignment was obtained by the 

most recent mtDNA phylogeny [10]. 

 

Y-Chromosome 

NRY were determined by two types of markers. Seventeen Short tandem repeats (STRs) were 

typed using the AmpFLSTR Yfiler® kit (PE, Applied Biosystems). Twenty-four Unique Event 

polymorphisms (UEPs; SRY 10831, M213, M9, M70, M22, Tat, 92R7, M173, P25, M96, 

M35, M78, M81, M123, M34, M17, M18, M73, M37, M63, M126, M153, M160, SRY 2627) 

were typed following the protocol published previously [20]. An additional set of nine UEPs 

(M33, U174, M191, M75, U209, M2, P2, M91, M60) has been designed to precise the 

haplogroup assignment. All data were read on an ABI PRISM 3730 sequencer and analysed 

with Genemapper v.4.0 (PE, Applied Biosystems). The YAP analysis has been obtained 

following Hammer and Horai [21]. The haplogroup assignment follows the most recently 

updated NRY phylogeny [9]. 

 

HTLV-1 

The overall HTLV-I seroprevalence in the Noir Marron population in French Guiana is about 

6% in women and 4% in men [13, 22-25]. Determination of HTLV-1 genomic subtype in env 

and LTR regions, which are used as markers of the migration of infected populations, was 

performed for 23 samples of HTLV-1 infected Noir Marron individuals representative of the 

main Noir Marron communities: Saramaka (n=6), Ndjuka (n=6), Aluku (n=5) and Paramaka 



(n=6) (Genbank accession number: GU725032-GU725054) and compared with the 

corresponding database available in Genbank.  

High molecular-weight DNA was extracted from peripheral blood buffy-coats using the 

QIAamp DNA Blood Mini Kit (Qiagen GmbH, Hilden, Germany). All samples were firstly 

determined to contain amplifiable DNA after being amplified by PCR for human β-globin. 

Five hundred nanograms, quantified by spectrophotometry, of each DNA sample was then 

subjected to two series of PCR to obtain the complete long terminal repeat (LTR) (755-bp) 

and a 522-bp region of the env gene, as previously described [26, 27]. To prevent false-

positive reactions, all pre- and post-PCR operations were performed in separate facilities. The 

complete LTR was obtained for eight individuals while the 522-bp Env fragment was obtained 

for the 23 samples tested. The amplified products of the appropriate size were cloned, 

sequenced and phylogenetically analysed as described [28, 29]. 

 

Data Analyses 

All summary statistics for mtDNA and NRY haplotype variation, Tajima's D and Fu's Fs tests 

were calculated using the ARLEQUIN 3.11 software package [17]. Four databases were 

compiled from published studies, updated with data from the African populations of Benin 

and Ivory Coast analysed in the present study. The African mtDNA database was composed of 

170 populations representing 8727 HVS-I and 3500 HVS-II haplotypes associated with their 

corresponding haplogroup assignment. The African NRY database was composed of 145 

populations representing 8909 individuals typed for UEP informative for the haplogroup 

assignment and 1200 Y-STR profiles. As the Y- SNP haplogroup information is lacking in 

some African regions, it was statistically inferred from the Y-STR data available, as 

previously explained [30]. For some analyses, the African databases were divided into nine 

groups according to their historical region of slavery described by H.S. Klein [1], the genetic 



coherence and published genetic studies [2, 31]: North Africa (Algeria, Canary Island, Egypt, 

Mauritania, Morocco), Windward Coast, Senegambia and Sierra Leone (Cabo Verde, Guinee-

Bissau, Mali, Senegal, Sierra Leone), Gold Coast and Bight of Benin (Benin, Burkina Faso, 

Ivory Coast), Bight of Biafra (Cameroon, Central African Republic, Chad, Equatorial Guinea, 

Gabon, Nigeria, Niger, Sao Tome), South West Africa (Angola, Cabinda, Democratic 

Republic of Congo), South Africa (Botswana, Malawi, Namibia, Zambia, Zimbabwe), South 

East Africa (Mozambique), East Africa (Ethiopia, Kenya, Rwanda, Somalia, Uganda, Sudan, 

Tanzania), and Pygmies. The mtDNA and NRY databases of African American and urban 

hybridised populations were composed of 95 and 90 populations, respectively. Due to the 

heterogeneous resolution of haplogroup assignment among populations, forming a non-

relevant database, only the admixture rates of continental populations (European, Amerindian 

and African), given in published studies, have been considered. Despite this bias, as African 

ancestry is relatively common in all African Americans [1, 32], their discrimination is mostly 

due to differential contribution of non-African gene pools. All populations considered in the 

present study are located on Figure 2 and complete references are available in Additional file 

1. 

Haplotype networks were generated for mtDNA haplogroups L2a* and L1c*, and 

for the NRY haplogroup E1b1a* via the median-joining algorithm of Network v.4.5.1.6 

(www.fluxus-engineering.com) from the Noir Marron data and all African and African 

American comparable data. To obtain the most parsimonious networks the reticulation 

permissivity was set to zero. Data were pre-processed using the star contraction option in 

Network v.4.5.1.6 [33]. For the mtDNA data, hypermutable sites were identified by post–

processing using the Steiner (MP) algorithm within Network 4.5.1.6, and removed from the 

analysis [34]. Because of the high level of reticulation in the E1b1a* sample, Y-STR loci were 

subdivided into three mutation rate classes based on observed STR allelic variance and 



weighted as follows: 4 (low) for DYS391, DYS392; 2 (intermediate) for DYS389I, 

DYS389II, DYS19, DYS393, DYS390; or 1 (high) for DYS385a/b [35]. 

Cross-population comparisons of maternal and paternal lineages based on the frequency of 

haplogroups or rates of continental ancestry common to all samples in the database were 

performed using ARLEQUIN 3.11 [17]. The significance of Fst values is given for p-values 

under a threshold of 0.05. All results obtained for the comparison between the Noir Marron 

and each population of the database were graphically plotted on a map using Surfer v.8.0, 

using the location of each population given in the corresponding study. Factorial 

Correspondence Analysis (FCA) based on mtDNA and Y-chromosome haplogroup 

frequencies were performed using XLstat v.7.5.2. Analyses of molecular variance (AMOVA) 

were performed with ARLEQUIN 3.11 [17]. Admixture estimates were calculated by two 

different methods. The first, based on haplotypic homology (up to 99% of homology), was 

calculated by the percentage of shared lineages (LS) between the Noir Marron and each 

compared group [36]. Haplotype comparisons were performed from HVS-I mtDNA sequences 

(16030-16360) and NRY core haplotypes (DYS19, DYS389I, DYS389II, DYS390, DYS391, 

DYS392, DYS393, DYS385a/b) to obtain the most relevant results from the compiled 

databases. The second estimator, mY, was calculated with the ADMIX2.0 program [37]. Both 

mtDNA-based and NRY-based estimates were calculated from haplogroup frequencies 

without taking into account molecular distances between haplogroups. The parental 

populations were chosen among the groups that presented a Fst value, obtained by the 

AMOVA for the comparison with the Noir Marron, lower than an threshold fixed at 0.1.  

Concerning HTLV-1 Env and LTR phylogenetic analysis, the phylogenetic trees were 

generated using the Neighbor-Joining method performed in the PAUP v.4.0b10 program using 

representative HTLV-1 sequences available in Genbank, including four env sequences and one 

LTR sequence typed in Noir Marron individuals of French Guiana [13]. The strains were 



aligned with the DAMBE v.4.2.13 program and the final alignment was submitted to the 

Modeltest v. 3.6 program to select, according to the Akaike Information Criterion (AIC), the 

best model to apply to phylogenetic analyses. Confidence levels were estimated with the 

distance NJBOOT program (1,000 replicates). 

 

Results  

mtDNA 

Genetic diversity 

A total of 78 different mtDNA haplotypes were characterised among the 142 Noir Marron 

individuals (GenBank accession number: GU807605 - GU808086; Additional file 2). 

Statistics estimating the sequence diversity were relatively high (H=0.988 ± 0.003 ; π = 0.019 

± 0.009; θk =72.859; Table 1) and within the range found in other African American groups 

and Sub-Saharan populations  [32, 38]. Although the Fu’s test is not significant (Fs= -23.987 

(0.001); Table 1), this diversity is correlated with a significant value obtained for Tajima’s 

test, revealing a population expansion (D = -0.549 (0.357); Table 1). Considering the 

differences between the number of individuals in each Noir Marron community, all results are 

relatively similar.  [E3] 

 All mtDNA haplotypes were phylogenetically identified following the latest classification 

[10]. 99.3% of them belonged to the major African haplogroup L* (Additional file 2). The 

highest percentages were observed for L2a* (22.5%) and L1c (19.0%), which are widely 

present in Africa [31]. Phylogenetic trees of these sub-haplogroups show no Noir Marron 

founder haplotype, but an integration of all haplotypes within the African and African 

American diversity (Figure 3). The sub-divisions L2a1 (14.1%) and L1c1 (12.7%) were found 

more in West African populations [31]. This West African link was also suggested by the 

presence of L1b (14.1%), L3e2 (7.0%), L3d (3.5%) and L3f1 (3.5%). Other L sub-



haplogroups are more widely found in Africa but present low frequencies in the Noir Marron 

sample. A unique European haplogroup was observed through the characterization of U5b1c, 

which is present in the South of Europe [39].[E4] With the aim to evaluate the maternal 

contribution of Africans, Europeans and Amerindians, the mtDNA admixture ratio was 

calculated following the geographical origin of each haplogroup. It revealed an African 

contribution of 99.3% and a European contribution of 0.7%, whereas no Amerindian 

contribution was detectable. 

 

Population cross-comparisons  

The maternal genetic diversity of the Noir Marron was compared to other American African 

and African communities using a population pairwise Fst comparison. All Fst values obtained 

are plotted graphically on Figure 4. Among the 95 African American and American urban 

groups, only 24 presented low differentiations with the Noir Marron (Fst<0.05). The majority 

inhabit the United States, especially the East Coast [6, 40-43]. The remaining populations are 

the Garifunas in Belize [44], some English-speaking Caribbean groups such as St Kitts, St 

Vincent and St Lucia [45], Afro-Venezuelians in Curiepe [5] and the black communities of 

Porto Alegre, Rio de Janeiro in Brazil [46, 47]. The 71 maternal lineages of other African 

American or urban hybridised communities were highly different from the Noir Marron 

(Fst>0.25), such as the neighbouring Afro-Brazilian groups, notably due to their Amerindian 

ancestry [5, 47-51].  

Thus, the mtDNA pattern of the Noir Marron is closer to that of Africans than of most African 

Americans. This maternal African ancestry showed a low divergence with 41% of African 

groups (Fst<0.05). Many of them are located in West Africa and South West Africa, such as 

Senegal [52], Cabo Verde [53], Sierra Leone [54], Guinea-Bissau [55], Mali [41], Ivory Coast 

(present study), Burkina Faso [56], Benin [57] (present study), Niger [56], Cameroon [58-63], 



Chad [59],Gabon [62], Equatorial Guinea [64], Angola [65] and Cabinda [66]. However, 

inside this large area, three clusters of high genetic divergence from the mtDNA gene pool 

were observed identifying the Pygmy communities of Cameroon [61, 62], Gabon [62] and 

Central African Republic [63, 67], the Fang from Equatorial Guinea [68] and the Mbuti from 

the Democratic Republic of Congo [69]. High divergences were also present in North African, 

East African, South East African and South African populations, even though some groups 

have low differences, as one Somalian population [56], one Sudanese population [70], one 

Namibian population [63], one Rwandan group [71] and three Bantu-speaking groups located 

in the Democratic Republic of Congo [69], Uganda [72] and Kenya [56].[E5] 

A Factorial Correspondence Analysis (FCA) was realised to look at the mitochondrial 

relationships between the Noir Marron and 170 African populations (Figure 5). 40.6% of the 

genetic variance is represented by Factors 1 and 2. The haplogroups M-N-R, L1c and L0a 

contribute significantly (contribution>5%) to Axis 1 and haplogroups L0a and L1c to Axis 2 

(contribution>5%). The Noir Marron are clustered in West African and South West African 

populations historically enslaved, whereas North Africans, South Africans, East Africans and 

populations from South East Africa are peripheral to this group.  This result is consistent with 

the results of the population pairwise Fst comparison.[E6] 

An AMOVA based on the clustering of African populations by historical regions of slavery 

and genetic coherence showed that 10.4% of the variance lies between groups, 11.1% among 

populations within groups and 78.6% within populations (p values<0.01; Additional file 3). 

Despite this low significance, high values were found between the Noir Marron and the East 

Africans, South Africans, North Africans and Pygmies (0.13≤Fst≤0.26), whereas they seem to 

be genetically closer to populations in the groups “Windward Coast, Senegambia and Sierra 

Leone”, “Gold Coast and Bight of Benin”, “Bight of Biafra”, “South West Africa” and “South 

East Africa” (Fst≤0.07, Table 2). 



 

Admixture analysis 

All mtDNA data of the five African groups presenting Fst values lower than the chosen 

threshold (Fst<0.1) were used to evaluate the maternal African admixture percentage of the 

Noir Marron community (Table 2). Both estimators, LS and mY rates, identify a major origin 

in the “Gold Coast and Bight of Benin” (LS=29%; mY=64%). Two other important ancestries 

are detected in “South West Africa” (LS=26%; mY=23%) and in the “Bight of Biafra” 

(LS=19%; mY=13%). The two last regions present lower probabilities of ancestry: 

“Windward Coast, Senegambia and Sierra Leone” (LS=13%; mY=0%) and “South East 

Africa” (LS=14%; mY=0%).[E7] 

 

Y-Chromosome 

Genetic diversity 

Among the 42 Noir Marron typed for NRY, 36 different haplotypes were detected (YHRD 

accession Number YA003610-YA003615; Additional file 4). The genetic diversity shows a 

high-level (H=0.990 ± 0.008), similar  to that found in other African American groups and 

Sub-Saharan populations [73]. All haplotypes were grouped using the latest NRY phylogeny  

[9]. 90.5% belong to the major African haplogroup E1b1* with notably 88% of the sub-

division E1b1a*, which is more frequent in West Africa [74]. The phylogenetic tree of this 

sub-haplogroup shows no Noir Marron founder haplotype, but an integration of all haplotypes 

within the African and African American diversity (Figure 6).  Three occurrences of African 

haplogroups A and B, more frequent in South West Africa and South Africa, especially in 

Pygmy and Khoisan populations, were detected [9, 75]. One individual was positively typed 

for the R1b sub-haplogroup which is as frequent in Europe as in Cameroon [76, 77].[E8] The 

probable continental paternal ancestry was estimated following the geographical origin of 



each haplogroup. It shows an African contribution of 97.6%, a European contribution of 2.4% 

and no Amerindian origin. 

 

Population cross-comparisons 

As for the maternal lineage, the paternal gene pool of the Noir Marron was compared to those 

of other African Americans and Africans (Figure 7). Only three of the 90 African Americans 

showed low Fst values (Fst<0.05): a community from Illinois [78] and Baltimore in United 

States [43], and one from Ribeirão Preto in Brazil [5]. All others presented significant 

differentiation from the Noir Marron. Moreover, Fst values exceeded  0.5 in 47 of them, due 

to their European inheritance, for example the African Americans of North East Brazil [5, 48, 

79-81]. The preserved African ancestry of the Noir Marron paternal lineage leads them to be 

genetically closer to African groups. 

 The NRY gene pool of the Noir Marron showed low Fst values with only 10% of the African 

groups; the majority located in the Ivory Coast (present study), Ghana [82], Benin (present 

study) and in Cameroon [82, 83], and with one from Gabon [77], Angola [66], Namibia [82], 

Zimbabwe [82] and South Africa [82]. The other groups: North Africans, East Africans, South 

East Africans, Pygmies [76, 77, 82] and other South Africans, notably the Khoisan groups [76, 

82], presented high divergence (Fst>0.25). The paternal ancestry of the Noir Marron is 

observed to be less widespread than the maternal ancestry.[E9] 

A FCA was computed to plot the Noir Marron and African genetic NRY diversity (Figure 8). 

A total of 25.4% of the variance is represented on Axis 1 and 2. The haplogroups G-H-K-R, 

E1b1b1b, E1b1b1a, E1b1a and IJ contribute significantly to Axis 1 (contribution>5%) and 

haplogroups E*, E1b1a, E1b1, CF, E1b1b1b and E1b1b1 to Axis 2 (contribution>5%). As 

observed for mtDNA, the Noir Marron are clustered in a group composed predominantly of 



West African and South West African populations, while other African populations are 

peripheral to this group. [E10] 

The clustering of African populations by historical regions of slavery showed no genetic 

significance, due to the low genetic divergence between West African groups, as suggested by 

previous studies on NRY data [76, 77]. Ten percent of the variance lies between groups, 

25.7% among populations within groups, and 64.3% within populations (p values<0.01; 

Additional file 3). However, confirming the results of the population pairwise Fst comparison, 

the lowest values were obtained between the Noir Marron and “Gold Coast and Bight of 

Benin”, “Windward Coast, Senegambia and Sierra Leone”, “Bight of Biafra”, “South West 

Africa” and “South Africa” (Fst≤0.08; Table 3). 

 

Admixture analysis 

All NRY data of the five African groups presenting Fst values lower than the chosen threshold 

(Fst<0.1) were used to evaluate the paternal African admixture percentage of the Noir Marron 

community (Table 3). As for mtDNA analysies, both estimators, LS and mY rates, identify a 

major origin in the “Gold Coast and Bight of Benin” (LS=28%; mY=74%). One other non 

negligible ancestry is located in “Windward Coast, Senegambia and Sierra Leone” (LS=25%; 

mY=26%). The remaining regions show lower probabilities of ancestry: “Bight of Biafra” 

(LS=19%; mY=0%) “South West Africa” (LS=13%; mY=0%).[E11] 

 

HTLV-1 

Sequence analysis 

The analysis of the env 522-bp fragments of the 23 new HTLV-1 Noir Marron strains 

indicated neither deletion nor insertion compared with the ATK-1 reference strain. 

Comparison of the 23 strains indicated that four sequences and two pairs were identical. All 



together, the 23 strains showed a nucleotidic interstrain difference ranging from 0-1.5% and 

an amino acid divergence ranging from 0-1.7%. Nevertheless, 17 strains were closely related 

with 0-0.8% of nucleotide differences on 522 nucleotides and 0-1.7% at the amino acid level.  

In parallel, LTR sequences obtained from eight representative individuals of the four Noir 

Marron communities: Saramaka (2), Ndjuka (2), Aluku (2) and Paramaka (2) were analysed 

and exhibited 0-2.4% divergence at the nucleotide level. Interestingly, six strains were closely 

related with only 0-0.7% nucleotidic divergence for the 757-bp LTR fragment. 

 

Phylogenetic analysis 

Phylogenetic analyses were performed comparing these 23 new sequences with 70 

representatives env gene sequences available in GenBank of the HTLV-1 Cosmopolitan A 

subtype, as well as sequences obtained from individuals originating from Melanesian C 

subtype, used as an outgroup (Figure 9). Firstly, all sequences belonged to the large 

cosmopolitan subtype and none were related to other subtypes, especially other African ones 

(B or D), which are mainly found in Central Africa (data not shown). Secondly, among the 23 

Noir Marron HTLV-1 env strains, 17 clustered in the same large “West Africa” subgroup, 

clustering strains from Senegal, Burkina Faso and Ivory Coast. Three strains (1602, 2002 and 

4702) constitute a cluster related to strains originating from Mali, Burkina-Faso, Guinea-

Bissau, Senegal and Mauritania, while the remaining three (4502, 7202 and 6101) were related 

to South American strains from Peru, Surinam and Guyana. Worth noting is that most of the 

LTR sequences (6/8) analysed belonged to the “West Africa” subgroup, while the remaining 

two clustered in the “Transcontinental” subgroup (Additional file 5). [E12] 

 

Discussion 

An original African American population 



The African American community is composed of highly diverse ethnic groups in terms of 

their historical, cultural and biological inheritances. Each of them has their specific identity. 

Being one of the last known American maroon community, the Noir Marron are an important 

part this diversity [3]. A previous analysis of the Gm system showed their preserved African 

gene pool (>95%), revealing a first insight into their genetic originality in comparison with 

other neighbouring African American groups [7]. The present study, exploring three different 

genetic systems, strengthens this conclusion. Although each parental lineage presents 

European and/or Amerindian contribution, the bulk (>95%) of their genetic diversity is 

inherited from African ancestors. Indeed, 99.3% of the mtDNA genetic profile of the Noir 

Marron comes from Africa, whereas the paternal African ancestry increases to 97.6% and the 

HTLV-1 strains, probably of African origin, represent 6/8 for the LTR and 20/23 for the env 

region. Thus, despite four centuries in America, neighboured by European settlers and 

Amerindian ethnic groups with whom the Noir Marron made cultural exchanges [3], none or 

restricted gene flow has influenced their African genetic identity. This emphasises the role of 

the maroon identity in shaping their genetic profile. Although exchanges were necessary for 

the survival of the community, the ethnic integrity of the maroon society is characterised by a 

struggle against foreign threats, and above all the struggles of former slavers. Thus, interethnic 

couples, which effectively exist as between the Aluku and the Wayana [3], would contradict 

this cultural rule. This does not mean that the Noir Marron have been genetically isolated in 

the equatorial forest as revealed by their genetic diversity (HmtDNA=0.988; HNRY=0.990). 

Comparable to the values of African populations, these values reflect the mass arrival of 

slaves into the Guianas over four centuries, an important proportion of which increased the 

number of the Noir Marron. Genetic diversities do not seem to have been impacted by 

demographic crises or geographical isolations which could have occurred during the history of 

Noir Marron which was punctuated by many conflicts (D= -0.55 (0.357); Table 1). Although 



some communities were briefly reduced to a hundred individuals, as the Aluku were [3], the 

constant flow of new maroons balanced the genetic lost (Figures 3 and 6). Forming 

sustainable groups, still increasing in number, their adaptation to the Guianese context has 

been facilitated. Their maroon identity, their adaptation to the Amazonian environment and 

the relatively important number of immigrants explain why the Noir Marron, who today 

constitute 30,000 individuals in French Guiana, have conserved their African genetic 

inheritance. 

These characteristics are all the more interesting when compared with other African American 

groups. The composition of the uniparental haplogroups of this African gene pool is close to 

observations in other African American populations, notably because of the high frequencies 

of L2a (22,5%) and L1c (19%) for the maternal lineage and E1b1a (88%) for the paternal 

lineage (Figures 3 and 6), such in African American in the United States (L1c=11%; 

L2a=19%; E1b1a=62%) or in Afro-Brazilian  in Porto Alegre (L1c=14%; L2a=17%; 

E1b1a=44%) [40, 46, 84]. As most of the slavers traded along the Atlantic coast of Africa, the 

average composition of each lineage is similar among the African American group. If this 

ancestral genetic pool was effectively common, the evolution of each one has produced highly 

divergent patterns. The population pairwise Fst comparisons of both uniparental systems 

showed that the majority of African American groups presented significant genetic differences 

from the Noir Marron (Fst>0.25; Figures 4 and 7). The discrepancies are mainly due to 

European and/or Amerindian contributions, which are most often sex-biased [85]. This 

preferential gene flow is partly due to the importance of European male migration and an 

easier acceptance of Amerindian women in tri-hybridised communities [86]. The African 

inheritance of the Noir Marron, consequently not sex-biased, is peculiar in the African 

American landscape. Even their neighbouring African American communities are much more 

hybridised, as observed in North East Brazil [5, 47, 48, 50, 79-81]. If this characteristic is 



mainly shaped by their maroon identity, it is surprising to notice that other maroon groups 

present an admixed and sex-biased genetic profile, such as the Maroons in Jamaica (African 

maternal lineage: 87%; African paternal lineage: 58%) [45]. Even the Curiau quilombo, which 

could have originated from the same plantations as the Noir Marron, present a highly 

hybridised genetic profile (African maternal lineage: 54%; African paternal lineage: 37%) 

[81]. Furthermore, most maroon groups have lost a part of their genetic diversity after genetic 

drift due to their relative isolation, as has occurred in the Garifuña in Honduras 

(HmtDNA=0.897) [87] and in the Angolares in the African island of São Tomé (HmtDNA=0.919) 

[88, 89]. Thus, the Noir Marron are also genetically original within the maroon populations 

cluster. The reason for this difference can be enlightened by examining the groups presenting 

similar patterns in both lineages (Fst<0.15). They are all located on the East coast of the 

United States, such as the Gullah/Geechee in South Carolina  [43, 78]. Although these groups 

never present an estimated African ancestry as high as in the Noir Marron, they present a low 

sex-bias. A historical cultural phenomenon can be evoked to link this common pattern. 

Although assimilation of Amerindian and African women was encouraged as a strategy for the 

occupation in Portuguese colonies [90], tolerated in Spanish territories [1], it was not the case 

in French, English and Dutch colonies [91, 92]. Such cultural traits have favoured inter-ethnic 

admixture in the first case and separated communities in the second. The common behaviours 

in these colonies have caused a low level of sex-biased admixture, bringing the gene pools of 

the Noir Marron and the African Americans of the East coast of the United States closer. The 

combination of the maroon identity in the former Dutch colony has preserved the African 

genetic diversity of the Noir Marron ancestors. 

 

Retracing the African origin 



The exceptional conservation of the African genetic diversity allows a relevant picture of the 

genetic inheritance of slaves that were deported to the Guianas to be determined. If the 

African inheritance is genetically marked by the predominance of L* haplogroup in maternal 

lineages, E1b1* in paternal lineages and HTLV-1 A strains of African origin, the detailed 

examination of each of these components gives a more precise location of their ancestries [31, 

76]. Indeed, a close link with West African populations, also suggested by the Gm system 

analysis [7], is identifiable through the relatively high frequencies of some mtDNA sub-

haplogroups as L2a1 (22.5%), L1b (14.1%), L3d (3.5%), L3f1 (3.5%), NRY sub-haplogroups 

as E1b1a7* (33.3%) and E1b1a8* (21.4%) [31, 76]. Most of the HTLV-1 Noir Marron strains 

analysed were clustered with West African strains originating from the Ivory Coast, Ghana, 

Senegal and Burkina-Faso (Figure 9). Secondly, genetic relationships between the Noir 

Marron and South West African populations can be distinguished. Although no HTLV-1 B 

and D subtypes (Central African genotypes) were detected among the studied samples, the 

observed frequencies of mtDNA sub-haplogroups L1c1 (12.7%) and L3e2 (7.4%), and the 

NRY sub-haplogroup B (4.7%) [9, 31, 62] sign the link between the Noir Marron and South 

West Africa. These two genetic affinities were confirmed by cross-comparisons between the 

gene pools of the Noir Marron and each African population (Figures 4 and 7). The ethnic 

groups inhabiting West and South West Africa presented the lowest genetic divergence 

(Fst<0.15) compared with other African groups, at the noticeable exception of the Pygmy 

communities, the Fang and some groups from Senegal, Chad and Niger. North Africans, East 

Africans and Khoisans (Fst>0.25) have not contributed to the Noir Marron gene pool, 

confirming that the presence of NRY haplogroups A and B are probably of South West 

African inheritance. The West and South West African mixed-ancestry of the Noir Marron is 

attested by FCA performed for each lineage, plotting the Noir Marron diversity inside a 



cluster of these populations (Figures 5 and 8). As hypothesised, the populations located in the 

historical regions of slavery are the most probable Noir Marron ancestors. 

 

Despite the fact that the relative genetic homogeneity within these populations make any 

grouping non-significant, as reported in many studies [41, 93], historical data give a strong 

significance to the clustering because of their importance during the Atlantic Slave Trade. All 

estimators of ancestry, for both uniparental systems, state the Gold Coast and the Bight of 

Benin as the major origin of the Noir Marron’s ancestors (mtDNA: LS=0.29; mY=0.64; NRY:  

LS=0.28; mY=0.74; Tables 2 and 3). A region also suggested by the phylogenetic analyses of 

the HTLV-1 strains (Figure 9 and Additional file 5).  These converging results are concordant 

with historical records showing that this region was the port of departure of slaves who were 

deported to the Guianas [2]. Almost 224,000 individuals, natives of the Gold Coast and the 

Bight of Benin, were sold as slaves to work in the Guianese plantations. Their relative 

importance has largely imprinted the genetic background of the Noir Marron but also their 

culture. For example, Akan words are still present in their vocabulary; their pantheon is 

largely inherited from those present in populations in Ghana; funeral rites are common with 

Fanti-Ashanti customs [3]. Thus, the Noir Marron culture and genes have kept the traces of 

individuals coming from the Gold Coast and the Bight of Benin, a region largely impacted by 

the Atlantic Slave Trade. 

 

As highlighted by historical data, slaves never came from a unique region and the Noir 

Marron gene pool has also kept this characteristic. Indeed, other ancestries are detected in 

uniparental systems, in a sex-biased manner, contradictory to the Gold Coast and the Bight of 

Benin origin. The majority of the remaining maternal ancestry is located in the Bight of Biafra 

(LS=0.19; mY=0.13; Tables 2) and in South West Africa (LS=0.28; mY=0.23; Tables 2), while 



the largest part of the remaining paternal ancestry is located in the region of the Windward 

Coast, Senegambia and Sierra Leone (LS=0.25; mY=0.26; Tables 3). Thus, a sex-biased 

ancestry is detected in the Noir Marron gene pool. From a major origin in the Gold Coast and 

the Bight of Benin, a paternal gradient goes north, while a maternal gradient goes south.  This 

divergent geographical gradient of the uniparental ancestries may be explained by regional-

specific characteristics of trading during the Atlantic Slave Trade. In the Windward Coast, 

Senegambia and Sierra Leone, slave trade was also implied in the Trans-Saharan Slave Trade 

[94] in which women were more sold than men, reducing the number of women sent to the 

Americas. Men from these regions were judged by European settlers to be more robust than 

Angolans to work in the plantations, raising the demand of male slaves in these trading posts, 

such as in the Gorée Island. The maternal gradient, more surprisingly, may be the 

consequence of these practices. The rising price of male slaves from the Windward Coast, 

Senegambia and Sierra Leone would have forced the slavers to balance the cost of buying 

slaves in the south, where slave markets were created for the Atlantic Slave Trade, without 

competition from the Arab traders. Thus, in the Bight of Biafra and South West Africa, slavers 

could have bought more women to maintain a sex-ratio close to 2/3 men and 1/3 women [1]. 

 

Conclusions 

Belonging to the wide African American cultural area, the Noir Marron in French Guiana is 

unique due to their African gene pool. Despite four centuries neighboured by Europeans and 

Amerindians with whom intense cultural exchanges were made, their maroon identity has 

limited gene flow. The conservation of the African diversity in each genetic system studied 

revealed a probable non-altered inheritance from their slave ancestors. A major origin was 

located on the Gold Coast and in the Bight of Benin; regions highly impacted by slavery. 

From this region, uniparental genetic markers showed a sex-biased origin, with the remaining 



male ancestry located from Senegal to Benin, and the remaining female ancestry from the 

Ivory Coast to Angola. Different historical and cultural traits of the Slave Trade have created a 

differential migration of the female and male enslaved ancestors of the Noir Marron. Thus, 

this sex-biased African ancestry is still genetically imprinted in the Noir Marron gene pool, a 

characteristic that deserves to be examined in other African American groups, such as the 

Creoles, in order to gain a relevant picture of the dynamics of the African gene flow that 

occurred during the Slave Trade. 
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Figures 

 

Figure 1 – Geographic location of the Noir Marron communities sampled.  

The brown hatched areas locate the Noir Marron communities in Surinam and in French 

Guiana. The brown points represent the communities sampled and their relative size depends 

to the number of sampled individuals. 

 

Figure 2 - Geographic locations of populations analysed in the study. 

Each number refers to a unique group characterised by its ethnic name, country, the genetic 

system studied and the author of the corresponding study. The nomenclature and the 

references are available in Additional file 1. 

 

Figure 3 – Median-joining phylogenetic trees of Noir Marron, African and African 

American mitochondrial HVS-I haplotypes belonging to haplogroups L1c* and L2a*. 

 

Figure 4 - Map of Fst values obtained for the pairwise comparison of the Noir Marron 

maternal lineages with those of Africans, African Americans and urban Americans. 

The red colour scale represents the Fst values calculated between the mtDNA data of the Noir 

Marron and the populations of interest represented by black crosses. 

 

Figure 5 - Plot showing the 1
st
 and 2

nd
 principal component of the FCA computed from 

the mtDNA haplogroup frequencies of the Noir Marron and African populations. Square 

point represents the Noir Marron population, circle points the West African and South West 

African populations, and all other groups are represented by triangular points. The colours 

identify the groups considered in the present study. 



 

Figure 6 – Median-joining phylogenetic trees of Noir Marron, African and African 

American Y-chromosome STR haplotypes belonging to haplogroups E1b1a*. 

 

Figure 7 - Map of Fst values obtained for the pairwise comparison of the Noir Marron 

paternal lineages with those of Africans, African Americans and urban Americans. 

The green colour scale represents the Fst values calculated between the NRY data of the Noir 

Marron and the populations of interest, which are represented by black crosses. 

 

Figure 8 - Plot showing the 1
st
  and 2

nd
  principal component of the FCA computed from 

the NRY haplogroup frequencies of the Noir Marron and African populations. 

Square point represents the Noir Marron population, circle points the West African and South 

West African populations, and all other groups are represented by triangular points. The 

colours identify the groups considered in the present study. 

 

Figure 9 - Env phylogenetic tree generated using the Neighbor-Joining method 

performed in the PAUP program (v4.0b10) on a 519-bp fragment of the Env gene using 

75 HTLV-1 available sequences available in Genbank. 

The new Noir Marron data are coded in red. The Noir Marron data already published are 

coded “NM”. The Mel5 and VAN136 strains were used as out-group. The HTLV-1 strains 

were aligned with the DAMBE program (version 4.2.13). The final alignment was submitted 

to the Modeltest program (version 3.6) to select, according to the Akaike Information 

Criterion (AIC), the best model to apply to phylogenetic analyses. The selected model was the 

GTR. Bootstrap support (1,000 replicates) is noted on the branch of the tree. 

 



Tables 

 

Table 1 - Summary statistics estimating the mtDNA genetic diversity of the Noir 

Marron. 

N: number of sequences; k: number of different haplotypes; H: Haplotype diversity; θ: 

mutation drift statistic calculated from the number of different haplotypes (θk) and segregating 

sites (θs); π: nucleotide diversity. 

 

Table 2 - Estimators of shared maternal ancestries of the Noir Marron. 

Estimates and standard deviations (shown between parentheses) were computed from 1000 

bootstraps replications. N indiv: number of individuals; N pop: number of populations; LS: 

Shared Lineages analysis (see [36]); mY: estimator of admixture (see [37]); dashes represent 

groups that were not included in the calculation of ancestry. 

 

 

Table 3 - Estimators of shared paternal ancestries of the Noir Marron. 

Estimates and standard deviations (shown between parentheses) were computed from 1000 

bootstraps replications. N indiv: number of individuals; N pop: number of populations; LS: 

Shared Lineages analysis (see [36]); mY: estimator of admixture (see [37]); dashes represent 

groups that were no included in the calculation of ancestry. 

 

 

 

 



Additional files 

 

Additional file 1 

References of the populations compiled in the databases used for the comparisons to 

Noir Marron data. 

 

Additional file 2 

MtDNA haplotypes and their respective haplogroup classification found in Noir Marron, 

Beninese, Yacouba and Ahizi sampling. 

 

Additional file 3 

AMOVA analyses performed with mtDNA and NRY data to compare the Noir Marron 

gene pool with the ones of the databases. 

 

Additional file 4 

NRY haplotypes and their respective haplogroup classification found in Noir Marron, 

Beninese, Yacouba and Ahizi sampling. 

 

Additional file 5 

LTR phylogenetic tree constructed by the neighbour-joining method of HTLV-1 strains 

in 8 Noir Marron (in red) and HTLV-1 sequences of the database. 

The Noir Marron data already published are coded “NM”. The H24 strain was used as out-

group. The HTLV-1 strains were aligned with the DAMBE program (version 4.2.13). The 



final alignment was submitted to the Modeltest program (version 3.6) to select, according to 

the Akaike Information Criterion (AIC), the best model to apply to phylogenetic analyses. The 

selected model was the GTR. Bootstrap support (1,000 replicates) is noted on the branch of 

the tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1 - Summary statistics estimating the mtDNA genetic diversity of the Noir 

Marron. 

Population N k 
H 

(SD) 

θk 

(95% CI) 

θs 

(SD) 

π 

(SD) 

Tajima's D 

(P) 

Fu's Fs 

(P) 

Aluku 10 9 
0.977 

(± 0.054) 

38.775 

(9.402 – 169.084 

15.553 

(±6.606) 

0.019        

(± 0.010) 

-0.075 

(0.494) 

-0.693 

(0.302) 

Ndjuka 80 50 
0.983 

(± 0.006) 

60.691 

(38.367 – 96.897) 

17.499 

(± 4.766) 

0.019        

(± 0.009) 

-0.549 

(0.357) 

-17.139 

(0.001) 

Paramaka 11 7 
0.911 

(± 0.077) 

9.023 

(2.907 – 29.191) 

14.846 

(± 6.322) 

0.019        

(± 0.011) 

0.145 

(0.620) 

1.899 

(0.820) 

Saramaka 41 23 
0.975 

(± 0.013) 

28.055 

(14.525 – 55.171) 

16.512 

(± 5.232) 

0.020        

(± 0.010) 

-0.084 

(0.538) 

-2.178 

(0.236) 

Total Noir Marron 142 78 
0.988 

(± 0.003) 

72.859 

(51.408 - 103.439) 

18.668 

(± 0.622) 

0.019        

(± 0.009) 

-0.549 

(0.357) 

-23.987 

(0.001) 

 

Table 2 - Estimators of shared maternal ancestries of the Noir Marron. 

 

Windward 

Coast, 

Senegambia 

and Sierra 

Leone 

Gold Coast 

& 

Bight of 

Benin 

Bight of 

Biafra 

South West 

Africa 

North 

Africa 
East Africa 

South East 

Africa 

South 

Africa 
Pygmies 

N pop 

(N indiv) 

20 

(1604) 

7 

(440) 

60 

(2361) 

9 

(625) 

18 

(1223) 

33 

(1365) 

10 

(425) 

5 

(165) 

8 

(519) 

Fst (versus 

Noir Marron) 
0.03 0.03 0.07 0.06 0.26 0.13 0.07 0.14 0.23 

Shared 

Lineages rate 

(LS) 

0.13 0.29 0.19 0.26 - - 0.14 - - 

Admixture 

rate  (mY)  
0 (±0.17) 0.64 (±0.20) 0.13 (±0.16) 0.23 (±0.17) - - 0 (±0.18) -  - 

 

 

Table 3 - Estimators of shared paternal ancestries of the Noir Marron. 

  

Windward 

Coast, 

Senegambia 

and Sierra 

Leone 

Gold Coast 

& 

Bight of 

Benin 

Bight of 

Biafra 

South West 

Africa 

North 

Africa 
East Africa 

South East 

Africa 

South 

Africa 
Pygmies 

N pop 

(N indiv) 

13 

(182) 

10 

(197) 

42 

(1321) 

8 

(236) 

7 

(234) 

39 

(462) 

5 

(291) 

13 

(54) 

9 

(127) 

Fst (versus 

Noir Marron) 
0.08 0.07 0.07 0.04 0.25 0.14 0.16 0.07 0.31 

Shared 

Lineages rate 

(LS) 

0.25 0.28 0.19 0.13 - - - 0.16 - 

Admixture 

rate  (mY)  
0.26 (±0.28) 0.74 (±0.19) 0 (±0.35) 0 (±0.20) - -    - 0 (±0.15)   - 
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