

Application of Broad-Spectrum Resequencing Microarray for Genotyping Rhabdoviruses.

Laurent Dacheux, Nicolas Berthet, Gabriel Dissard, Edward C Holmes, Olivier Delmas, Florence Larrous, Ghislaine Guigon, Philip Dickinson, Ousmane Faye, Amadou A Sall, et al.

▶ To cite this version:

Laurent Dacheux, Nicolas Berthet, Gabriel Dissard, Edward C
 Holmes, Olivier Delmas, et al.. Application of Broad-Spectrum Resequencing Microarray for Genotyping Rhabdovirus
es.. Journal of Virology, 2010, epub ahead of print.
 $10.1128/{\rm JVI.00771-10}$. pasteur-00507428

HAL Id: pasteur-00507428 https://pasteur.hal.science/pasteur-00507428

Submitted on 30 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Application of Broad-Spectrum Resequencing Microarray for Genotyping

2 Rhabdoviruses

3 4

Running title: Rhabdovirus Identification by Resequencing Microarray

5

6 Laurent Dacheux^{1[‡]}, Nicolas Berthet^{2[‡]}, Gabriel Dissard³, Edward C. Holmes⁴, Olivier

7 Delmas¹, Florence Larrous¹, Ghislaine Guigon³, Philip Dickinson⁵, Ousmane Faye⁶, Amadou

8 A. Sall⁶, Iain G. Old⁷, Katherine Kong⁵, Giulia C. Kennedy⁵, Jean-Claude Manuguerra⁸,

9 Stewart T. Cole⁹, Valérie Caro³, Antoine Gessain², and Hervé Bourhy^{1*}

¹Institut Pasteur, Lyssavirus dynamics and host adaptation Unit, Paris, France; ²Institut

11 Pasteur, Epidemiology and Pathophysiology Oncogenic Virus Unit, CNRS URA3015, Paris,

12 France; ³Institut Pasteur, Genotyping of Pathogens and Public Health Technological Platform,

13 Paris, France; ⁴Center for Infectious Disease Dynamics, Department of Biology, The

14 Pennsylvania State University, University Park, USA; ⁵Affymetrix, Santa Clara, CA, USA

⁶Institut Pasteur de Dakar, Arbovirology Laboratory, Dakar, Senegal; ⁷Institut Pasteur,

16 European Office, Paris, France; ⁸Institut Pasteur, Laboratory for Urgent Responses to

17 Biological Threats, Paris, France; ⁹Institut Pasteur, Bacterial Molecular Genetics Unit, Paris,

18 France

[‡] Had contributed in equal part in this work.

20 * Corresponding author: Hervé Bourhy, Unité Dynamique des lyssavirus et adaptation à

21 l'hôte, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France, Phone: +33 1

22 45 68 87 85, Fax: +33 1 40 61 30 20, Email: herve.bourhy@pasteur.fr

23 Abstract word count: 217

24 Text word count: 5756

1

2 ABSTRACT

3 The rapid and accurate identification of pathogens is critical in the control of infectious 4 disease. To this end we analysed the capacity for viral detection and identification of a newly 5 described high density resequencing microarray (RMA), termed PathogenID, which was 6 designed for multiple pathogen detection using database similarity searching. We focused on 7 one of the largest and most diverse viral families described to date, the family Rhabdoviridae. 8 We demonstrate that this approach has the potential to identify both known and related 9 viruses for which precise sequence information is unavailable. In particular, we demonstrate 10 that a strategy based on consensus sequence determination for analysis of RMA output data 11 enabled successful detection of viruses exhibiting up to 26% nucleotide divergence with the 12 closest sequence tiled on the array. Using clinical specimens obtained from rabid patients and 13 animals, this method also shows a high species-level concordance with standard reference 14 assays, indicating that it is amenable for the development of diagnostic assays. Finally, twelve 15 animal rhabdoviruses which were currently unclassified, unassigned, or assigned as tentative 16 species within the family Rhabdoviridae were successfully detected. These new data allowed 17 an unprecedented phylogenetic analysis of 106 rhabdoviruses, and further suggests that the 18 principles and methodology developed here may be used for the broad-spectrum surveillance 19 and the broader-scale investigation of biodiversity in the viral world.

1 INTRODUCTION

2

3 The ability to simultaneously screen for a large panel of pathogens in clinical samples, 4 especially viruses, will represent a major development in the diagnosis of infectious diseases 5 and in surveillance programs for emerging pathogens. Currently, most diagnostic methods are 6 based on species-specific viral nucleic acid amplification. Although rapid and extremely 7 sensitive, these methods are suboptimal when testing for a large number of known pathogens, 8 when viral sequence divergence is high, when new but related viruses are anticipated, or when 9 no clear viral etiologic agent is suspected. To overcome these technical difficulties, newer 10 technologies have been employed, especially microarrays dedicated to pathogen detection. 11 Indeed, DNA-microarrays have been shown to be a powerful platform for the highly 12 multiplexed differential diagnosis of infectious diseases. For example, pathogen microarrays 13 can be simultaneously used to screen various viral or bacterial families, and have been 14 successfully used in the detection of microbial agents from different clinical samples (10-12, 15 19, 32, 35, 41, 42, 48).

16

17 The 'classical' DNA-microarrays developed so far are based on use of long oligonucleotide 18 pathogen specific probes (\geq 50 nt). Although powerful in terms of sensitivity, these diagnostic 19 tools have the disadvantage of decreased specificity, making it necessary to target multiple 20 markers, and rely on hybridization patterns for pathogen identifications, leading to 21 unquantifiable errors (4). Moreover, these methods lack comprehensive information about the 22 pathogen at the single nucleotide level, which could represent a major problem when the 23 sequences in question share a high degree of similarity (21). The microarray-based pathogen 24 resequencing assay represents a promising alternative tool to overcome these limitations. This 25 method identifies each specific pathogen and is capable of resequencing, or "fingerprinting", multiple pathogens in a single test. Indeed, this technology uses tiled sets of 10^5 to 10^6 probes 26 27 of 25mers, which contain one perfectly matched and three mismatched probes per base for 28 both strands of the target genes (16). This technology also offers the potential for a single test 29 that detects and discriminates between a target pathogen and its closest phylogenetic near 30 neighbours, which expands the repertoire of identifiable organisms far beyond those that are 31 initially included on the array. Successful results have been obtained using this technology, 32 especially for the detection of broad-spectrum respiratory tract pathogens using respiratory 33 pathogen microarrays (2, 25, 26) or the detection of a broad range of biothreat agents (1, 23, 34 36, 45). The amplification step, which is more often limiting for this technology, has also

1 benefited from recent developments. Phi29 polymerase-based amplification methods provide 2 amplified DNA with minimal changes in sequence and relative abundance for many biomedical applications (3, 31, 40). The amplification factor varied between 10^6 to 10^9 , and it 3 4 was also demonstrated that co-amplification occurred when viral RNA was mixed with 5 bacterial DNA (3). This whole transcriptome amplification (WTA) approach can also be 6 successfully applied to viral genomic RNA of all sizes. Amplifying viral RNA by WTA 7 provides considerably better sensitivity and accuracy of detection than random RT-PCR in the 8 context of resequencing microarrays (RMAs) (3).

9

10 The rhabdoviruses are single-stranded, negative-sense RNA genome viruses classified into six 11 genera, three of which - Vesiculovirus, Lyssavirus and Ephemerovirus - include arthropod-12 borne agents that infect birds, reptiles and mammals, as well as a variety of non-vector-borne 13 mammalian or fish viruses (International Committee on Taxonomy of Viruses database, 14 ICTVdb) (reviewed in (7)). These rhabdoviruses are the etiological agents of human diseases, 15 such as rabies, that cause serious public health problems. Some rhabdoviruses also cause 16 important economic losses in livestock. The three others genera include Nucleorhabdovirus 17 and Cytorhabdovirus with are arthropod-borne viruses infecting plants, and Novirhabdovirus 18 which comprises fish viruses. Other than the well characterized rhabdoviruses that are known 19 to be important for agriculture and public health, there is also a constantly growing list of 20 rhabdoviruses, isolated from a variety of vertebrate and invertebrate hosts, that are partially 21 characterized and are still waiting for definitive genus or species assignment. Considering the 22 large spectrum of potential animal reservoirs of these viruses compared to the few identified 23 virus species, it is highly likely that the number of uncharacterised rhabdoviruses is immense. 24 Unclassified or unassigned viruses have been tentatively identified as members of the 25 *Rhabdoviridae* by electron microscopy, based on their bullet-shaped morphology – a 26 characteristic trait of members of this family – or using their antigenic relationships based on serological tests (9, 38). Gene sequencing and phylogenetic relationships have then been 27 28 progressively applied to complete this initial virus taxonomy (6, 22, 27). Importantly, a 29 strongly conserved domain in the rhabdovirus genome, within the polymerase gene, is a 30 useful target for the exploration of the distant evolutionary relationships among these diverse 31 viruses (6). This region corresponds to block III of the viral polymerase, a region predicted to 32 be essential for RNA polymerase function as it is highly conserved among most of the RNA-33 dependant RNA polymerases (14, 33, 46). A direct application using this sequence region was 34 recently described for lyssavirus RNA detection in human rabies diagnosis (13). Taking

advantage of these characteristics, this polymerase region was also used to design probes for
 high-density RMAs, also called PathogenID arrays (Affymetrix), which are optimized for the
 detection and sequence determination of several RNA viruses, particularly rhabdoviruses (1).

In the present study, PathogenID microarrays containing probes for the detection of up to 126 viruses were tested using a consensus sequence determination strategy for analysis of output RMA data. We demonstrate that this approach has the potential to identify, in experimentally infected and clinical specimens, known but also phylogenetically related rhabdoviruses for which precise sequence information was not available.

1 MATERIALS AND METHODS

2 3

Design of the PathogenID microarray for rhabdovirus detection

4 Two generations of PathogenID arrays were used in this study: PathogenID v1.0 containing 5 probes for the detection of 42 viruses (including 3 prototype rhabdoviruses), 50 bacteria and 619 toxin or antibiotic resistance genes (previously described in (1)), and PathogenID v2.0 6 7 able to detect 126 viruses (including 30 different rhabdoviruses), 124 bacteria, 673 toxin or 8 antibiotic resistance genes and two human genes as controls. These arrays include prototype 9 sequences of all species (or genotypes) of the genus Lyssavirus, of the other major genera 10 defined in the family *Rhabdoviridae*, such as *Ephemerovirus* and *Vesiculovirus*, and of 13 11 rhabdoviruses awaiting classification or tentatively classified among minor groups such as Le 12 Dantec or Hark park groups (6). For all the selected probes tiled on the two versions of 13 PathogenID array, the same conserved region of the viral polymerase gene was used (block 14 III). However, the size of the target region tiled on the array was longer in the second version 15 (up to 937 nucleotides in length for some sequences compared to roughly 500 nucleotides in 16 the first version) (Tables 1 and 2).

17

18 Virus strains and biological samples analyzed

19 Detailed descriptions of all prototype and field virus strains used in this study and their 20 sources are listed in Tables 1 and 2. Briefly, a total of 16 and 31 different viruses were tested 21 using PathogenID v1.0 (15 lyssaviruses and one vesiculovirus) and PathogenID v2.0 (14 22 lyssaviruses, one vesiculovirus, 12 unassigned and four tentative species of animal 23 rhabdoviruses according to ICTVdb) respectively. Samples tested included in vitro infected 24 cells, synthetic nucleotide target (when the corresponding virus strain was not available), 25 brain biopsies obtained from experimentally infected mice, and biological specimens from 26 various animals (brains from bat, cat, dog and fox) and humans (brain, saliva and skin 27 biopsies).

28

29 Extraction and amplification of viral RNA

RNA extraction from biological samples was processed with TRI Reagent (Molecular
Research Center) according to the manufacturer's recommendations. After extraction, viral
RNA were reverse-transcribed, then amplified using the whole transcriptome amplification
(WTA) protocol (QuantiTect Whole Transcriptome Kit, Qiagen) as described previously (3).

1 Microarrays assay

2 All amplification products obtained from viral RNA were quantified by Quantit BR 3 (Invitrogen) according to manufacturer's instructions or by the NanoDrop ND-1000 4 spectrophotometer instrument (Thermo Scientific). A recommended amount of DNA target 5 was fragmented and labelled according to GeneChip Resequencing Assay Manual (Affymetrix). The microarray hybridization process was carried out according to the protocol 6 7 recommended by the manufacturer (Affymetrix). All details and parameter settings for the 8 data analysis (essentially conversion of raw image files obtained from scanning the 9 microarrays into FASTA files containing the sequences of base calls made for each tiled region of the microarray) have been described previously (1). The base call rate refers to the 10 11 percentage of base calls generated from the full-length tiled sequence.

13 Data analysis

12

In the first approach, resequencing data obtained by the PathogenID v1.0 microarray were 14 15 manually submitted to the nr/nt database of NCBI for BLASTN query. The default BLAST 16 options were modified. The word size was set to 7 nucleotides. The expected threshold was 17 increased from its default value of 10 up to 100,000 to reduce the filtering of short sequences and sequences rich in undetermined calls, which can assist the correct taxonomic 18 19 identification. To avoid false negative results induced by high number of undetermined 20 nucleotides in the sequences, the 'low complexity level filter' (-F) was also turned off. 21 BLAST sorts the resulting hits according to their bit scores so that the sequence that is the 22 most similar to the entry sequence appears first. Identification of virus strains tested was 23 considered successful only when the best hit was unique and corresponded to the expected 24 species or isolate (according to the nucleotide sequences of these viruses already available in 25 the nr/nt database of NCBI).

26

27 In the second approach, an automatic bioinformatic-based analysis of RMA data provided by 28 PathogenID v2.0 was developed, including a consensus sequence determination strategy 29 completed with a systematic BLAST strategy. The general workflow of this strategy is 30 represented in Figure 2. A Perl script reads the input data, which consists of one FASTA file 31 per sample that contains all the sequences read by the GSEQ software from the hybridization. 32 A modified version of the filtering process described by Malanoski et al. (29) is applied to 33 the sequences. The retained sequences contain stretches of nucleotides that are ascertained 34 according to the following algorithm. Briefly, sequences that do not contain subsequences

1 fulfilling specific parameters (minimum *m* nucleotide length and maximum undetermined 2 nucleotides 'N' content) defined by the user are discarded. These parameters differ from those 3 described in the original filtering process where m was fixed to 20 and 'N' was a value 4 depending on *m*, leading to filter out all short subsequences even with a high base call rate. 5 For subsequence determination, the program starts from the first base call of the considered 6 sequence and searches for the first *m*-bases window area that scores the elongation threshold 7 defined by the user, which represents another difference with the filtering process described 8 by Malanoski et al. where this elongation threshold was fixed to 60% (29). The subsequence 9 is extended by one base (m + 1) if the percentage of 'N' remains inferior to the elongation 10 threshold. When this threshold is exceeded, the elongation is stopped and the subsequence is 11 conserved. This process is reiterated until the end of the sequence is reached to generate as 12 many informative sequences as possible. All our analysis were performed using filtering 13 parameters as follow: m = 12, N = 10 and elongation threshold = 10%.

14

15 A systematic BLAST strategy to search for sequence homologues was then performed with 16 the filtered sequences containing subsequences. These sequences individually undergo a 17 BLAST analysis based on a local viral and bacterial database (sequences obtained after 18 filtering from the nr/nt database of NCBI, updated and used for BLAST queries on December, 19 2009), and the taxonomy of the best BLAST hits are retrieved (Fig. 2A). The default BLAST 20 options were modified as previously described. In the case where several hits obtain the 21 highest bit score, the script automatically retrieves the taxonomies of the 10 first BLAST hits. 22 The final taxonomic identification for each virus strain tested was done by the user as follows: 23 i) identification at the species or isolate level when an unique best hit corresponds to expected 24 the species or isolate, ii) identification at the genus level (if available) when multiple best 25 viral hits exist and correspond to different species within the same genus among the 26 Rhabdoviridae, iii) identification at the family level when multiple best viral hits exist and 27 correspond to different rhabdoviruses genera, or iv) negative or inaccurate identification when 28 BLAST query is not possible or when multiple best hits correspond to other viral families, 29 respectively.

30

For the consensus sequence determination strategy, resequencing data obtained from rhabdoviral tiled sequences are filtered as previously described then submitted to a multiple alignment with Clustal W (39) from which a consensus sequence is determined (Fig. 2B). For each sequence in the alignment, if a called base has undetermined calls on both sides, it is

1 replaced by an undetermined call. If different calls appear in the sequences for a given 2 position, the majority base call is added to the consensus. The positions that contain an 3 undetermined call or a gap are not considered in the majority base call computation. If 4 multiple base calls tie for the majority, an undetermined call appears at this position in the 5 consensus sequence. This procedure generally increases the length and accuracy of the query 6 sequence for subsequent analysis. Homology searching of the consensus sequences is 7 performed with BLAST using the parameters previously described, and the taxonomy of the 8 best hit is retrieved as for the systematic homology searching approach. We tested if the 9 resulting consensus sequences had higher identification accuracy than any individual 10 sequence or could be used to design PCR primers for a characterization of a potential novel 11 isolate.

12

13 Sequencing confirmation

14 Conventional sequencing was undertaken after the PCR amplification of viral targets directly 15 from biological samples (after RNA extraction and reverse transcription) or from 10- to 100-16 fold water-diluted WTA products. Primer design was first based on consensus sequences 17 obtained using the consensus sequence determination strategy previously described and/or on 18 rhabdovirus nucleotide sequences available on GenBank. Depending on the results obtained 19 and the virus strain tested, primer design, the set of primers used and PCR conditions for 20 partial polymerase gene amplification were then adjusted (list of primers and PCR conditions 21 available on request from the corresponding author). All PCR products were obtained using 22 the proofreading DNA polymerase ExtTaq (Takara). Sequence assembly and consensus 23 sequences were obtained using Sequencher 4.7 (Gene Codes). GenBank accession numbers 24 for the sequences newly acquired are designated GU815994-GU816024 and are indicated in 25 Tables 1 and 2.

26

27 Phylogenetic analysis

The data set of 15 newly sequenced rhabdoviruses from this study (including the Sandjimba and Kolongo viruses previously only identified on partial nucleoprotein gene sequences, as well as *Piry virus* for which the nucleotide sequences of different genes were available) was compared with the corresponding block III polymerase amino acid sequences of 91 other rhabdoviruses collected from GenBank (Table 6). DNA translation was performed with BioEdit software (17) and sequence alignment was performed using Clustal W programme (39) and then checked for accuracy by eye. This resulted in a final alignment of 106 sequences of 160 amino acid residues in length. Phylogenetic analysis of these sequences was then undertaken using the Bayesian method available in the MrBayes package (18). This analysis utilized the WAG model of amino acid replacement with a gamma distribution of among-site rate variation. Chains were run for 10 million generations (with a 10% burnin) at which point all parameter estimates had converged. The level of support for each node is provided by Bayesian Posterior Probability (BPP) values. 1

2 **RESULTS**

3

4 Identification of lyssaviruses based on two successive PathogenID microarray 5 generations using a systematic BLAST strategy

To test whether PathogenID microarrays, and specifically the prototype tiled regions, could be 6 7 used for the identification of a broad number of viral variants without relying on 8 predetermined hybridization patterns, representative animal viruses from the family 9 Rhabdoviridae (including unassigned or tentatively classified rhabdoviruses according to 10 ICTVdb) were studied. The capability of these RMAs to identify and discriminate between 11 near phylogenetic neighbours was first tested using one sequence of the genus Lyssavirus (PV 12 strain, genotype or species 1) tiled on the first generation of PathogenID microarray (Table 1). 13 It was possible to use BLAST to successfully identify virus strains with approximately 18% 14 nucleotide divergence compared to the prototype (Fig. 1). The hybridization of 15 virus 15 strains representative of the genetic diversity found in this species indicated that a single tiled 16 sequence was able to detect all variant strains belonging to the same species.

17

In addition, we evaluated the spectrum of detection of the second generation of PathogenID 18 19 microarray, which included one prototype sequence representative of each of the seven 20 species described in the genus Lyssavirus (Table 2). All the tested isolates led to the correct 21 species identification using a systematic BLAST strategy when hybridizing target belonging 22 to the same species that is tiled on the array (Table 3). Moreover, all tested isolates of known 23 genotype were also recognized by heterospecific tiled sequences (Table 3). We also 24 investigated the capacity of this RMA to detect more distantly related viruses not yet 25 classified into a species. Isolates 0406SEN and WCBV, which have been proposed to 26 represent new species in the genus *Lyssavirus* (5, 15), were surprisingly recognized by almost 27 all of the seven species sequences tiled on the PathogenID v2.0 microarray (Table 3). This 28 recognition indicates that each sequence tiled on the array has the ability to identify strains 29 that are more than 18% divergent, and up to 25.9% in some cases (Table 3). This analysis also 30 reveals that information on a strain hybridized on PathogenID v2.0 can be obtained from 31 distinct species or isolates tiled on the array. Evaluation of the spectrum of detection of this 32 RMA was further extended to two other genera of the Rhabdoviridae - Ephemerovirus and 33 Vesiculovirus (Table 4). Here again a successful identification was achieved using 34 homospecific sequences tiled on the array confirming the reliability of the identification.

1

In both experiments (Tables 3 and 4), low base call rate values were obtained for several combinations of hybridized and tiled sequences. These values were sufficient for a viral identification by BLAST, despite the presence of sequence reads as short as 14 nucleotides. This indicates that most of these short sequences corresponded to highly conserved sequence domains. The accuracy of these short sequences was checked by comparison with those obtained by classical sequencing (data not shown).

8

9 Identification of lyssaviruses based on the consensus sequence determination strategy

10 A bioinformatic workflow was developed to gather stretches of sequence reads obtained with 11 more or less distantly related sequences tiled on PathogenID v2.0. The aim of this strategy 12 was to enlarge the length of the determined sequence in order to improve the sensitivity of the 13 BLAST analysis compared to previously described methodologies (29). All sequence reads 14 obtained from prototype sequences of the genus Lyssavirus (at least 12 nucleotides long with 15 no more than one undetermined base, whether or not they initially led to a positive BLAST 16 identification), were used to generate a contiguous sequence. When overlapping fragments 17 were identified, a consensus sequence was generated to remove ambiguous or undetermined base calls. The methodology used to obtain consensus sequences confirmed the species 18 19 identification after BLAST analysis in the case of the seven lyssavirus nucleotide sequences 20 used for hybridization (Table 5). Moreover, these consensus sequences were found to be more 21 powerful in identifying unclassified or new species of lyssaviruses not tiled on the RMA than 22 resequencing data collected individually from each tiled sequences, as shown for strains 23 0406SEN and WCBV. In both cases, an increase of the base call rate was observed using this 24 consensus sequence strategy, from 63.5% (best base call rate obtained from individual 25 prototype sequences) to 75.9% for 0406SEN strain and from 32.7% to 60.9% for WCBV 26 (Tables 3 and 5). Once again, this increase of nucleotide base determination was associated 27 with a relatively high accuracy (91.8% and 97.3% concordance between the consensus 28 sequences and the reference sequences of 0406SEN and WCBV isolates, respectively (Table 29 5). To further demonstrate the ability of this strategy to detect and identify novel virus 30 species, consensus sequences were generated based only on six of the seven prototype tiled 31 sequences (excluding the homospecific sequence of the same species tiled on the array). All 32 strains from the seven species tested were accurately and specifically identified using this 33 restricted approach (Table 5). These results indicate that the consensus sequences obtained

1 could improve the detection of novel domain(s) not identified using only the closest prototype

2 sequence tiled on the RMA.

3

4 Assessment of clinical specimens

5 A total of 17 brain biopsy samples originating from experimentally infected mice as well as various clinical samples (n=8) obtained from the National Reference Centre for Rabies at 6 7 Institut Pasteur were tested for lyssavirus detection and identification using the two versions 8 of PathogenID microarray (Tables 1 and 2). These specimens were previously collected from 9 humans and animals with clinically documented encephalitis and suspected of rabies. They 10 were used to compare RMA results with conventional methods of diagnosis, including the 11 RT-hemi-nested PCR technique for the *intra-vitam* diagnosis of rabies in humans (13), the 12 fluorescent antibody test, the rabies tissue culture inoculation test, and the ELISA test for the 13 *post-mortem* diagnosis in humans and animals (8, 47). Among the eight clinical samples, most 14 were brain biopsies collected from different rabid mammals including bat (n=1), cat (n=1), 15 dog (n=1), fox (n=2) and in one case human (n=1). The two other samples comprised a saliva 16 specimen and a skin biopsy sample collected from two different rabid human patients (Tables 17 1 and 2). Except for the skin biopsy case which was not recognized, this comparison 18 demonstrated a complete concordance between our method and conventional methods for all 19 samples tested. Hence, the accuracy of the sequences provided with PathogenID microarray 20 was close to that obtained using classical sequencing (data not shown). The failure to detect 21 lyssaviruses in the skin biopsy samples was probably due to insufficient sensitivity of the 22 current RMA method, as viral RNA was only weakly detected after RT-hnPCR.

23

In sum, these results demonstrated that the newly developed amplification process by WTA coupled to hybridization to the PathogenID microarray allowed the detection of a large range of viral variants from various complex biological samples, including clinical samples (Tables 1 and 2).

28

29 Application of the RMA strategy to characterize new rhabdoviruses

Broad spectrum detection was demonstrated using the consensus sequences-based analysis strategy amongst viruses of the family *Rhabdoviridae*, and the more distantly related viruses examined included many viruses that are not yet classified as species. Accordingly, 17 different rhabdoviruses were tested, using brain samples from experimentally infected mice (n=16) or infected cell suspension. These viruses included four strains belonging to the genus 1 Vesiculovirus, with Vesicular stomatitis Indiana virus (VSIV), Boteke (BOTK), Jurona 2 (JURV) and Porton's (PORV) viruses, currently classified as tentative species for the three 3 latter; two strains belonging to the genus Ephemerovirus with Kimberley (KIMV) and 4 kotonkan (KOTV) viruses, corresponding to a tentative and unassigned species respectively; 5 and 11 presently unassigned rhabdoviruses, namely Kamese (KAMV), Mossuril (MOSV), Sandjimba (SAJV), Keuraliba (KEUV), Nkolbisson (NKOV), Garba (GARV), Nasoule 6 7 (NASV), Ouango (OUAV), Bimbo (BBOV), Bangoran (BGNV) and Gossas (GOSV) viruses 8 (virus taxonomy according to ICTVdb) (Table 2).

9

In the first step, successful detection and identification of these viruses using the PathogenID 10 11 v2.0 microarray was obtained for 12 out of 17 (70.5%) viruses; an accurate taxonomic 12 positioning - that is, within the family Rhabdoviridae- was also achieved, and for some the 13 corresponding genus (when available) was also matched accurately (data not shown). In the 14 second step, specific and consensus primers were designed based on the stretches of 15 sequences identified by the microarray using the consensus sequence determination strategy, 16 then subsequently used for PCR and classical sequencing of the amplified target nucleotide 17 sequences. For four (GARV, NASV, OUAV and BBOV) of the five rhabdoviruses that failed to be detected by the microarray, a region of 1000 nucleotides of the polymerase gene 18 19 encompassing that tiled on the array was successfully amplified by PCR and sequenced using 20 the primers described above. The only exception was the GOSV isolate which remained 21 undetected either using the microarray or by PCR. Further, two other rhabdoviruses not 22 previously tested with the PathogenID v2.0 microarray - Kolongo virus (KOLV, unclassified 23 species) and Piry virus (PIRYV, vesiculovirus) - were also amplified and sequenced using 24 these primers.

25

26 All the newly sequenced nucleotide regions of the polymerase gene were further 27 translated into protein sequences and aligned with 88 sequences of animal or plant 28 rhabdoviruses obtained from GenBank, producing a total data set of 106 sequences, 160 29 amino acid residues in length. A Bayesian phylogenetic analysis of these sequences 30 tentatively distinguished 15 groups of viruses based on their strongly supported monophyly 31 (Table 6 and Fig. 3). The members of the six genera - Ephemerovirus, Lyssavirus, 32 Vesiculovirus, Cytorhabdovirus, Nucleorhabdovirus, and Novirhabdovirus - fall into well-33 supported monophyletic groups (BPP value ≥0.97) (Fig. 3). Interestingly, this analysis 34 suggested the existence of at least nine more groups of currently unclassified rhabdoviruses,

1 which reflect important biological characteristics of the viruses in question. Five of these 2 groups have been proposed previously and were further supported by our analysis (data 3 available **CRORA** website: at the database 4 http://www.pasteur.fr/recherche/banques/CRORA/) (6, 27), reviewed in (7). The first group, 5 tentatively named Hart Park group, contains the previously described Parry Creek (PCRV), 6 Wongabel (WONV), Flanders (FLANV) and Ngaingan (NGAV) viruses added to the newly 7 identified BGNV, KAMV, MOSV and PORV viruses. This group has a large distribution that 8 encompasses Africa, Australia, Malaysia and the USA. These viruses have a wide host range, 9 as they have been found to infect dipterans, birds and mammals. The second group is the 10 Almpiwar group containing four members – two strains of Charleville (CHVV) virus with 11 CHVV_Ch9824 and CHVV_Ch9847 - and the Almpiwar (ALMV) and Humpty Doo 12 (HDOOV) viruses. Viruses of this group were isolated from Australia and are associated with 13 infection in dipterans, lizards but also in birds and mammals including humans. Another 14 group, herein referred to as the Le Dantec group, was also seen to form a distinct cluster with 15 Le Dantec virus (LDV), Fukuoka virus (FUKV) and the two newly molecularly identified 16 KEUV and NKOV viruses. Members were isolated in Japan and in Africa where they were 17 shown to infect dipterans and mammals including humans. The fourth group has been 18 tentatively named the Tibrogargan group and includes the Tupaia (TUPV) and Tibrogargan 19 (TIBV) viruses. These viruses were isolated in South-East Asia, Australia and New Guinea 20 from dipterans and mammals. Finally, we observed the Sigma group as previously described 21 (27). It includes Drosophila affinis (DAffSV), Drosophila obscura (DObsSV) and two strains 22 of Drosophila melanogaster (SIGMAV_AP30 and SIGMAV_HAP23) sigma viruses, 23 infecting *Drosophila* which were found in USA and in Europe.

24 In addition, four other tentative groups of viruses are newly described in this study. 25 The Sandjimba group includes the first molecularly classified BBOV, BTKV, NASV, GARV 26 and OUAV viruses and the previously described Oak-Vale (OVRV), SJAV and KOLV 27 viruses (identification based only on a limited region of the nucleoprotein gene for the two 28 latter). These viruses were isolated from birds and dipterans from the Central African 29 Republic and Australia (data available at http://www.pasteur.fr/recherche/banques/CRORA/) 30 (6, 9). Interestingly, all the African members of this group clustered closely, whereas the sole 31 Australian virus was more divergent, suggesting a potential geographical segregation. Second, 32 the Sinistar group includes the Siniperca chuatsi rhabdovirus (SCRV) isolated from mandarin 33 fish in China (37) and the starry flounder rhabdovirus (SFRV) identified from starry flounder 34 in USA (30). These two viruses appear to be more closely related to Le Dantec group than to

1 viruses in the genus Vesiculovirus in which several other fish rhabdoviruses are classified. 2 The third one is the Moussa group including two isolates of Moussa virus (MOUV_D24 and 3 MOUV_C23) collected from mosquitoes in Ivory Coast (34). Finally, a phylogenetic analysis 4 suggests the presence of another group within the plant rhabdoviruses: the Taastrup group 5 which comprises the single isolate Taastrup virus (TV) isolated from leafhoppers (Psammotettix alienus) originally collected in France (28). All these groups were strongly 6 7 supported by the Bayesian analysis (BPP ≥ 0.98), with the exception of the Sigma group 8 which exhibits a BPP of 0.88.

9 In addition, classification of some uncharacterised rhabdoviruses from our phylogenetic analysis diverged from that previously suggested by serology (according to 10 11 ICTVdb), and will probably need further investigation to determine their precise taxonomic 12 position within the family Rhabdoviridae (Table 4) (9, 38). In particular, the PORV and 13 BTKV viruses previously identified as vesiculoviruses were included within the Hart Park 14 and Sandjimba groups, respectively, and NKOV was classified into the Le Dantec group 15 instead of the Kern Canyon group. Moreover, in contrast to a previous phylogenetic study (22), TUPV was found to be more closely related to TIBV than to any other isolates of the 16 17 Sandjimba group. Finally, our study confirmed the previous serologically-based classification 18 of JURV and the recently identified Scophthalmus maximus rhabdovirus (SMRV) within the 19 Vesiculovirus genus (38, 49).

20

21

1 DISCUSSION

2

3 We have analysed the capacity of viral detection and identification of two versions of a newly 4 described RMA, termed PathogenID, which was designed specifically for multiple pathogen 5 detection using database similarity searching (1). To evaluate this microarray we focused on 6 one of the largest and most diverse viral families described to date, the Rhabdoviridae 7 (ITCVdb, reviewed in (7)). All virus strains tested (except WCBV) were extracted from 8 biological samples and amplified using a non-specific and unbiased WTA step as previously 9 described (3). Rhabdovirus targeted sequences were selected among blocks of conservation 10 within the polymerase gene (6). This region was chosen so as to encompass a sufficient 11 number of homologous but also polymorphic sites. The key advantage of this RMA strategy 12 is that it does not require a specific match between the tested samples and tiled sequences; 13 indeed, mismatches add value as they allow a precise typing of the unknown genetic re-14 sequenced element. In our case, the conserved nature of the target region in the polymerase 15 gene (block III) and the capability of detection of the RMA allows a precise taxonomic 16 identification (i.e. family, genus, species) and also provides key information on phylogenetic 17 relationships for some unclassified, unassigned or tentative species of rhabdoviruses. For 18 example, results obtained by the PathogenID v1.0 microarray evaluation demonstrated that 19 most of the intra-species nucleotide diversity found in the genus Lyssavirus can be covered by 20 a single prototype sequence tiled on the microarray. Using the second version of PathogenID, 21 which included one prototype sequence of each of the seven species recognized thus far 22 within the genus *Lyssavirus*, we extended the spectrum of detection of the RMA to potentially 23 all known or unknown lyssaviruses (i.e. positive detection of virus isolates presenting up to 24 25.9% nucleotide divergence with the considered tiled sequence) which is higher than 25 previous reports (24-26, 43, 44).

26

27 This study also indicates that accurate viral identification may still be possible even when 28 only shorter sequences are obtained from individual tiled prototype sequences. Indeed, taken 29 individually, these short-length stretches of nucleotide sequence could not give positive 30 results during the initial BLAST query. However, when used in the consensus sequence 31 determination strategy employed here, they improved the identification of virus strains 32 distantly related with that tiled on the RMA. For example, we were able to test and detect 33 rhabdoviruses based on sequence data obtained with tiled sequences that originated from 34 other viral genera.

2 The strategy developed here also allowed the potential detection of genetically diverse 3 rhabdoviruses, previously identified or unknown, using a limited number of sequences tiled 4 on the microarray. Using the PathogenID v2.0 microarray we were able to identify 30 5 rhabdoviruses in total. This included 12 viruses currently unclassified, unassigned or assigned as tentative species within the family *Rhabdoviridae* (according to ICTVdb). Moreover, the 6 7 consensus sequence based-analysis of RMA results was shown to be accurate when compared 8 to sequences obtained through classical sequencing (Table 5 and data not shown). Sequence 9 data provided by the PathogenID v2.0 microarray were also extremely helpful in the design of 10 specific primers to further sequence the targeted region of the viral polymerase gene of some 11 other rhabdoviruses. Finally, this approach allowed us to undertake the largest phylogenetic 12 analysis of the family Rhabdoviridae (Table 6 and Fig. 3), even though it is important to note 13 that the list of viruses and potential taxa described here is still incomplete and more viruses 14 will clearly be characterized in the near future. Despite these phylogenetic divisions, all the 15 viruses included in these proposed groups are closely related to vesiculoviruses and 16 ephemeroviruses and were found to infect a large spectrum of animals, included dipterans and 17 mammals (and previously referred to as the dimarhabdovirus supergroup (6) but also lizards 18 (Almpiwar group), birds (especially with Sandjimba group but also with Hart Park group) and 19 fish (Sinistar group) (Table 6).

20

21 Although promising, inadequate sequence selection for the design of the RMA, and 22 consequently a lack of coverage of the viral sequence space, represents an important 23 limitation. A proper selection of blocks of conserved sequence across taxonomic subdivisions 24 in the viral world could be similarly defined and targeted by the RMA assay, and in doing so 25 improve the detection power of this tool and therein greatly aid viral identification among the 26 Rhabdoviridae, or even in other viral families. The results presented here validated the 27 usefulness of the design methodology. It emphasizes the gain in identification using a 28 consensus sequence strategy determination compared to systematic BLAST strategy (29). 29 Indeed, this strategy allows us to use and accurately analyze the RMA output data, even if 30 only short subsequences with a high base call rate are obtained. It provides an informative 31 alternative to current molecular methods, such as classical or multiplex PCR, for the rapid 32 identification of viral pathogens. It is currently being applied to assist in a new generation of 33 RMA aimed at the detection and identification of genetically diverse and unknown viral 34 pathogens, and more broadly of any virus present in a clinical specimen. In contrast to

1 conventional microarrays, it is not limited by the requirement for prior knowledge on the 2 identities of viruses present in biological samples, and it is not restricted to the detection of a 3 limited number of candidate viruses. As such, this strategy has a great potential for being 4 implemented as a high throughput platform to identify more divergent viral organisms. This 5 technology could be especially useful in clinical diagnosis or in surveillance programs for 6 detecting uncharacterized viral pathogens or highly variable virus strains among a same 7 taxonomic genus or family, which is frequently the case for RNA viruses (2). The potential 8 applications of such a methodology therefore appear to be numerous: differential diagnostics 9 for illnesses with multiple potential causes (for example, central nervous diseases like 10 encephalitis and meningitis), tracking of emergent pathogens, the distinction of biological 11 threats from harmless phylogenetic neighbours, and the broader-scale investigation of 12 biodiversity in the viral world.

1 ACKNOWLEDGMENTS

This work was supported by Grant No. UC1 AI062613 (Kennedy) from the US National
Institute of Allergy and Infectious Diseases, National Institute of Health; Programme
Transversal de Recherche (PTR DEVA n°246) from Institut Pasteur, Paris, France, the
European Commission through the "VIZIER" Integrated Project (LSHG-CT-2004-511966)
and by the Institut Pasteur International Network Actions Concertées InterPasteuriennes
(2003/687). We thank the sponsorship of Total-Institut Pasteur for financial support.
We are grateful to D. Blondel, H. Zeller and CRORA database for having provided some of

9 the rhabdovirus isolates tested in this study. We are also grateful to the technical staff of the

10 Genotyping of Pathogens and Public Health Technological Platform for their patience and

11 their excellent work realized for sequencing of the different rhabdoviruses.

1 **REFERENCES** 2

3 Berthet, N., P. Dickinson, I. Filliol, A. K. Reinhardt, C. Batejat, T. Vallaeys, K. A. 1. 4 Kong, C. Davies, W. Lee, S. Zhang, Y. Turpaz, B. Heym, G. Coralie, L. Dacheux, 5 A. M. Burguière, H. Bourhy, I. G. Old, J. M. Manuguerra, S. T. Cole, and G. C. 6 Kennedy. 2007. Massively parallel pathogen identification using high-density 7 microarrays. Microbial Biotechnology 1:79-86. 8 2. Berthet, N., I. Leclercq, A. Dublineau, S. Shigematsu, A. M. Burguiere, C. 9 Filippone, A. Gessain, and J. C. Manuguerra. 2010. High-density resequencing 10 DNA microarrays in public health emergencies. Nat Biotechnol 28:25-27. 11 3. Berthet, N., A. K. Reinhardt, I. Leclercq, S. van Ooyen, C. Batejat, P. Dickinson, 12 R. Stamboliyska, I. G. Old, K. A. Kong, L. Dacheux, H. Bourhy, G. C. Kennedy, 13 C. Korfhage, S. T. Cole, and J. C. Manuguerra. 2008. Phi29 polymerase based 14 random amplification of viral RNA as an alternative to random RT-PCR. BMC Mol 15 Biol 9:77. Bodrossy, L., and A. Sessitsch. 2004. Oligonucleotide microarrays in microbial 16 4. 17 diagnostics. Curr Opin Microbiol 7:245-54. 18 5. Botvinkin, A. D., E. M. Poleschuk, I. V. Kuzmin, T. I. Borisova, S. V. Gazaryan, 19 P. Yager, and C. E. Rupprecht. 2003. Novel lyssaviruses isolated from bats in 20 Russia. Emerg Infect Dis 9:1623-5. 21 6. Bourhy, H., J. A. Cowley, F. Larrous, E. C. Holmes, and P. J. Walker. 2005. 22 Phylogenetic relationships among rhabdoviruses inferred using the L polymerase 23 gene. J Gen Virol 86:2849-58. 24 7. Bourhy, H., A. Gubala, R. P. Weir, and D. Boyle. 2008. Animal Rhabdoviruses, p. 25 111-121. In B. W. J. Mahy and M. H. V. Van Regenmortel (ed.), Encyclopedia of 26 Virology, vol. 1. Elsevier, Oxford. 27 8. Bourhy, H., P. E. Rollin, J. Vincent, and P. Sureau. 1989. Comparative field 28 evaluation of the fluorescent-antibody test, virus isolation from tissue culture, and enzyme immunodiagnosis for rapid laboratory diagnosis of rabies. J Clin Microbiol 29 30 27:519-23. 31 9. Calisher, C. H., N. Karabatsos, H. Zeller, J. P. Digoutte, R. B. Tesh, R. E. Shope, A. P. Travassos da Rosa, and T. D. St George. 1989. Antigenic relationships among 32 33 rhabdoviruses from vertebrates and hematophagous arthropods. Intervirology 30:241-34 57. 35 10. Chiu, C. Y., A. A. Alizadeh, S. Rouskin, J. D. Merker, E. Yeh, S. Yagi, D. 36 Schnurr, B. K. Patterson, D. Ganem, and J. L. DeRisi. 2007. Diagnosis of a critical 37 respiratory illness caused by human metapneumovirus by use of a pan-virus 38 microarray. J Clin Microbiol 45:2340-3. 39 11. Chiu, C. Y., A. L. Greninger, K. Kanada, T. Kwok, K. F. Fischer, C. Runckel, J. K. Louie, C. A. Glaser, S. Yagi, D. P. Schnurr, T. D. Haggerty, J. Parsonnet, D. 40 41 Ganem, and J. L. DeRisi. 2008. Identification of cardioviruses related to Theiler's 42 murine encephalomyelitis virus in human infections. Proc Natl Acad Sci U S A 43 105:14124-9. 44 12. Chiu, C. Y., A. Urisman, T. L. Greenhow, S. Rouskin, S. Yagi, D. Schnurr, C. 45 Wright, W. L. Drew, D. Wang, P. S. Weintrub, J. L. Derisi, and D. Ganem. 2008. Utility of DNA microarrays for detection of viruses in acute respiratory tract 46 47 infections in children. J Pediatr 153:76-83. 48 13. Dacheux, L., J. M. Reynes, P. Buchy, O. Sivuth, B. M. Diop, D. Rousset, C. 49 Rathat, N. Jolly, J. B. Dufourcq, C. Nareth, S. Diop, C. Iehle, R. Rajerison, C.

1		Sadorge, and H. Bourhy. 2008. A reliable diagnosis of human rabies based on
2		analysis of skin biopsy specimens. Clin Infect Dis 47:1410-7.
3	14.	Delarue, M., O. Poch, N. Tordo, D. Moras, and P. Argos. 1990. An attempt to unify
4		the structure of polymerases. Protein Eng 3: 461-7.
5	15.	Delmas, O., E. C. Holmes, C. Talbi, F. Larrous, L. Dacheux, C. Bouchier, and H.
6		Bourhy. 2008. Genomic diversity and evolution of the lyssaviruses. PLoS One
7		3: e2057.
8	16.	Hacia, J. G. 1999. Resequencing and mutational analysis using oligonucleotide
9		microarrays. Nat Genet 21:42-7.
10	17.	Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and
11		analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser 41:95-98.
12	18.	Huelsenbeck, J. P., and F. Ronquist. 2001. MRBAYES: Bayesian inference of
13		phylogenetic trees. Bioinformatics 17:754-5.
14	19.	Kistler, A., P. C. Avila, S. Rouskin, D. Wang, T. Ward, S. Yagi, D. Schnurr, D.
15		Ganem, J. L. DeRisi, and H. A. Boushey. 2007. Pan-viral screening of respiratory
16		tract infections in adults with and without asthma reveals unexpected human
17		coronavirus and human rhinovirus diversity. J Infect Dis 196: 817-25.
18	20.	Kondo, H., T. Maeda, Y. Shirako, and T. Tamada. 2006. Orchid fleck virus is a
19		rhabdovirus with an unusual bipartite genome. J Gen Virol 87:2413-21.
20	21.	Kothapalli, R., S. J. Yoder, S. Mane, and T. P. Loughran, Jr. 2002. Microarray
21		results: how accurate are they? BMC Bioinformatics 3:22.
22	22.	Kuzmin, I. V., G. J. Hughes, and C. E. Rupprecht. 2006. Phylogenetic relationships
23		of seven previously unclassified viruses within the family Rhabdoviridae using partial
24		nucleoprotein gene sequences. J Gen Virol 87:2323-31.
25	23.	Leski, T. A., B. Lin, A. P. Malanoski, Z. Wang, N. C. Long, C. E. Meador, B.
26		Barrows, S. Ibrahim, J. P. Hardick, M. Aitichou, J. M. Schnur, C. Tibbetts, and
27		D. A. Stenger. 2009. Testing and validation of high density resequencing microarray
28		for broad range biothreat agents detection. PLoS One 4:e6569.
29	24.	Lin, B., K. M. Blaney, A. P. Malanoski, A. G. Ligler, J. M. Schnur, D. Metzgar,
30		K. L. Russell, and D. A. Stenger. 2007. Using a resequencing microarray as a
31		multiple respiratory pathogen detection assay. J Clin Microbiol 45:443-52.
32	25.	Lin, B., A. P. Malanoski, Z. Wang, K. M. Blaney, A. G. Ligler, R. K. Rowley, E.
33		H. Hanson, E. von Rosenvinge, F. S. Ligler, A. W. Kusterbeck, D. Metzgar, C. P.
34		Barrozo, K. L. Russell, C. Tibbetts, J. M. Schnur, and D. A. Stenger. 2007.
35		Application of broad-spectrum, sequence-based pathogen identification in an urban
36		population. PLoS One 2:e419.
37	26.	Lin, B., Z. Wang, G. J. Vora, J. A. Thornton, J. M. Schnur, D. C. Thach, K. M.
38		Blaney, A. G. Ligler, A. P. Malanoski, J. Santiago, E. A. Walter, B. K. Agan, D.
39		Metzgar, D. Seto, L. T. Daum, R. Kruzelock, R. K. Rowley, E. H. Hanson, C.
40		Tibbetts, and D. A. Stenger. 2006. Broad-spectrum respiratory tract pathogen
41		identification using resequencing DNA microarrays. Genome Res 16:527-35.
42	27.	Longdon, B., D. J. Obbard, and F. M. Jiggins. 2010. Sigma viruses from three
43		species of Drosophila form a major new clade in the rhabdovirus phylogeny. Proc Biol
44		Sci 277: 35-44.
45	28.	Lundsgaard, T. 1997. Filovirus-like particles detected in the leafhopper
46		Psammotettix alienus. Virus Res 48: 35-40.
47	29.	Malanoski, A. P., B. Lin, Z. Wang, J. M. Schnur, and D. A. Stenger. 2006.
48		Automated identification of multiple micro-organisms from resequencing DNA
49		microarrays. Nucleic Acids Res 34: 5300-11.

JVI Accepts published online ahead of print

1	30.	Mork, C., P. Hershberger, R. Kocan, W. Batts, and J. Winton. 2004. Isolation and
2		characterization of a rhabdovirus from starry flounder (Platichthys stellatus) collected
3		from the northern portion of Puget Sound, Washington, USA. J Gen Virol 85:495-505.
4	31.	Paez, J. G., M. Lin, R. Beroukhim, J. C. Lee, X. Zhao, D. J. Richter, S. Gabriel,
5		P. Herman, H. Sasaki, D. Altshuler, C. Li, M. Meyerson, and W. R. Sellers. 2004.
6		Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand
7		displacement whole genome amplification. Nucleic Acids Res 32:e71.
8	32.	Palacios, G., P. L. Quan, O. J. Jabado, S. Conlan, D. L. Hirschberg, Y. Liu, J.
9		Zhai, N. Renwick, J. Hui, H. Hegyi, A. Grolla, J. E. Strong, J. S. Towner, T. W.
10		Geisbert, P. B. Jahrling, C. Buchen-Osmond, H. Ellerbrok, M. P. Sanchez-Seco,
11		Y. Lussier, P. Formenty, M. S. Nichol, H. Feldmann, T. Briese, and W. I. Lipkin.
12		2007. Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg
13		Infect Dis 13: 73-81.
14	33.	Poch, O., I. Sauvaget, M. Delarue, and N. Tordo. 1989. Identification of four
15		conserved motifs among the RNA-dependent polymerase encoding elements. Embo J
16		8: 3867-74.
17	34.	Ouan, P. L., S. Junglen, A. Tashmukhamedova, S. Conlan, S. K. Hutchison, A.
18		Kurth, H. Ellerbrok, M. Egholm, T. Briese, F. H. Leendertz, and W. I. Lipkin.
19		2010. Moussa virus: a new member of the Rhabdoviridae family isolated from Culex
20		decens mosquitoes in Cote d'Ivoire. Virus Res 147: 17-24.
21	35.	Ouan, P. L., G. Palacios, O. J. Jabado, S. Conlan, D. L. Hirschberg, F. Pozo, P. J.
22		Jack, D. Cisterna, N. Renwick, J. Hui, A. Drysdale, R. Amos-Ritchie, E.
23		Baumeister, V. Savv, K. M. Lager, J. A. Richt, D. B. Boyle, A. Garcia-Sastre, I.
24		Casas, P. Perez-Brena, T. Briese, and W. I. Lipkin. 2007. Detection of respiratory
25		viruses and subtype identification of influenza A viruses by GreeneChipResp
26		oligonucleotide microarray. J Clin Microbiol 45:2359-64.
27	36.	Taitt, C. R., A. P. Malanoski, B. Lin, D. A. Stenger, F. S. Ligler, A. W.
28		Kusterbeck, G. P. Anderson, S. E. Harmon, L. C. Shriver-Lake, S. K. Pollack, D.
29		M. Lennon, F. Lobo-Menendez, Z. Wang, and J. M. Schnur. 2008. Discrimination
30		between biothreat agents and 'near neighbor' species using a resequencing array.
31		FEMS Immunol Med Microbiol 54:356-64.
32	37.	Tao, J. J., G. Z. Zhou, J. F. Gui, and Q. Y. Zhang, 2008. Genomic sequence of
33		mandarin fish rhabdovirus with an unusual small non-transcriptional ORF. Virus Res
34		132: 86-96.
35	38.	Tesh, R. B., A. P. Travassos Da Rosa, and J. S. Travassos Da Rosa. 1983.
36		Antigenic relationship among rhabdoviruses infecting terrestrial vertebrates. J Gen
37		Virol 64 (Pt 1):169-76.
38	39.	Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving
39		the sensitivity of progressive multiple sequence alignment through sequence
40		weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids
41		Res 22: 4673-80.
42	40.	Vora, G. J., C. E. Meador, D. A. Stenger, and J. D. Andreadis. 2004. Nucleic acid
43		amplification strategies for DNA microarray-based pathogen detection. Appl Environ
44		Microbiol 70: 3047-54.
45	41.	Wang, D., L. Coscoy, M. Zylberberg, P. C. Avila, H. A. Boushey, D. Ganem, and
46		J. L. DeRisi. 2002. Microarray-based detection and genotyping of viral pathogens.
47		Proc Natl Acad Sci U S A 99: 15687-92.
48	42.	Wang, D., A. Urisman, Y. T. Liu, M. Springer, T. G. Ksiazek, D. D. Erdman, E.
49		R. Mardis, M. Hickenbotham, V. Magrini, J. Eldred, J. P. Latreille, R. K.
		- · · · ·

JVI Accepts published online ahead of print

- 1 Wilson, D. Ganem, and J. L. DeRisi. 2003. Viral discovery and sequence recovery 2 using DNA microarrays. PLoS Biol 1:E2. 3 43. Wang, Z., L. T. Daum, G. J. Vora, D. Metzgar, E. A. Walter, L. C. Canas, A. P. 4 Malanoski, B. Lin, and D. A. Stenger. 2006. Identifying influenza viruses with 5 resequencing microarrays. Emerg Infect Dis 12:638-46. 6 Wang, Z., A. P. Malanoski, B. Lin, C. Kidd, N. C. Long, K. M. Blaney, D. C. 44. 7 Thach, C. Tibbetts, and D. A. Stenger. 2008. Resequencing microarray probe design 8 for typing genetically diverse viruses: human rhinoviruses and enteroviruses. BMC 9 Genomics 9:577. 10 45. Wilson, W. J., C. L. Strout, T. Z. DeSantis, J. L. Stilwell, A. V. Carrano, and G. 11 L. Andersen. 2002. Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes 16:119-27. 12 13 46. Xiong, Y., and T. H. Eickbush. 1990. Origin and evolution of retroelements based 14 upon their reverse transcriptase sequences. Embo J 9:3353-62. 15 47. Xu, G., P. Weber, Q. Hu, H. Xue, L. Audry, C. Li, J. Wu, and H. Bourhy. 2007. A 16 simple sandwich ELISA (WELYSSA) for the detection of lyssavirus nucleocapsid in 17 rabies suspected specimens using mouse monoclonal antibodies. Biologicals 35:297-18 302. 19 48. Yoo, S. M., J. Y. Choi, J. K. Yun, J. K. Choi, S. Y. Shin, K. Lee, J. M. Kim, and S. 20 Y. Lee. 2009. DNA microarray-based identification of bacterial and fungal pathogens 21 in bloodstream infections. Mol Cell Probes. Zhang, Q. Y., J. J. Tao, L. Gui, G. Z. Zhou, H. M. Ruan, Z. Q. Li, and J. F. Gui. 22 49. 23 2007. Isolation and characterization of Scophthalmus maximus rhabdovirus. Dis
- 24 Aquat Organ **74:**95-105.

25 26

JVI Accepts published online ahead of print

1 FIGURES

- 2 3
- 4

- 5 6 7
- 8

9 Figure 1: Spectrum of detection of the PathogenID v1.0 microarray among the genus

10 Lyssavirus according to the natural nucleotide variation of the virus strains tested.

11 For each lyssavirus strain tested (n=15, indicated with black diamonds), results are indicated

by the percentage nucleotide divergence (compared to the single lyssavirus prototype sequence tiled on the microarray, x-axis) according to the percentage of nucleotide bases

sequence tiled on the microarray, x-axis) according to the percentage of nucleotide bases
 determined (call-rate, y-axis). The linear correlation curve between these two values is

presented, demonstrating a high correlation between these two values is

16 coefficient value of 0.89). All these 15 virus strains belonged to the same species as the tiled

17 prototype sequence (genotype 1) and were accurately identified after BLAST analysis (at the

18 species level). Other species (or genotypes) of lyssaviruses were not successfully detected

19 with PathogenID v1.0 microarray (nucleotide divergence over 20%, data not shown).

20 For further details concerning the lyssavirus strains used, see Table 1.

A: Systematic blast strategy

B: Consensus sequence determination strategy

1 2 3

4 Figure 2: Descriptive workflow of the automatic Perl bioinformatic-based analysis of the

5 PathogenID v2.0 data.

6 A: Systematic BLAST strategy

- 7 This strategy consists of filtering the sequences obtained from the output data of the RMA
- 8 with filter parameters defined by the user (see Methods section for further details), followed
- 9 by the systematic researching of homologues using a local BLAST viral and bacterial
- 10 database, and finally retrieve taxonomy of the best BLAST hits.

11 B: Consensus sequence determination strategy

- 12 A consensus sequence is generated using a multiple alignment with Clustal W based on the
- 13 sequences obtained from prototype rhabdovirus sequences tiled on the microarray. With this
- 14 process, the length and the accuracy of the query sequence can be increased. Homology
- 15 searching of the consensus sequences is performed with BLAST using the previously
- 16 described parameters and database. The taxonomy of the best BLAST hit is retrieved as for
- 17 the systematic homology searching approach.

1 2

3 Figure 3: Phylogenetic relationships of the *Rhabdoviridae* based on a 160 amino acid

4 alignment of the polymerase gene.

- 1 Phylogenetic analysis of 106 amino-acid sequences of the block III of the polymerase (160
- 2 amino acid residues in length) of rhabdoviruses using a Bayesian method. This analysis
- 3 utilized the WAG model of amino acid replacement with a gamma distribution of among-site
- 4 rate variation. Chains were run for 10 million generations (with a 10% burnin) at which point
- 5 all parameter estimates had converged. The level of support for each node is provided by
- 6 Bayesian Posterior Probability (BPP) values. The genera (black font) and groups (red font) of
- 7 the *Rhabdoviridae* are indicated, along with their associated BPP values. All horizontal
- 8 branch lengths are drawn to a scale of amino acid replacements per residue. The tree is mid-
- 9 point rooted for purposes of clarity only. Sequence tiled on the array or their closely related
- 10 sequence (* 9147FRA instead of PV) are indicated in blue font. Sequences corresponding to
- 11 lyssavirus species 1 and positively detected by PathogenID v1.0 are indicated by a red line
- 12 (#). Sequences detected by PathogenID v2.0 are indicated by red squares.
- 13 14

TABLES

Table 1 :

_

Description of virus species belonging to the *Rhabdoviridae* used for selection of tiled sequences and for validation of the PathogenID v1.0 microarray.

	Genus and specie name ^a (abbreviation)	Reference no.	Host species/ vector	Origin	Year of first isolation	Tiled region ^b	Length (bp)	Biological samples tested	GenBank accession no.
Origin d	f tiled sequences Lyssavirus								
	Rabies virus (RABV)	PV	Vaccine			7452- 7953	502		NC_001542
	Vesiculovirus Vesicular stomatitis Indiana virus (VSIV)	VSVLMS				7453- 7953	497		K02378
	Ephemerovirus Bovine ephemeral fever virus (BEFV)	BB7721	Bos taurus	Australia	1968	7454- 7952	498		NC_002526
Tested r	habdovirus species								
	Lyssavirus								
	Genotype 1								
	Rabies virus (RABV)	8764THA	Human	Thailand	1983			Human brain	EU293111
	Rabies virus (RABV)	9147FRA	Red fox	France	1991			Fox brain	EU293115
	Rabies virus (RABV)	93128MAR	Fixed strain	Morroco	?			Mouse brain	GU815994
	Rabies virus (RABV)	9811CHI	Dog	China	1998			Mouse brain	GU815995

Rabies virus (RABV)	0435AFG	Dog	Afghanis tan	2004	 	Mouse brain	GU815996
Rabies virus (RABV)	9001FRA	Dog bitten by a bat	French Guyana	1990	 	Mouse brain	EU293113
Rabies virus (RABV)	9026CI	Dog	Ivory Coast	1990	 	Mouse brain	GU815997
Rabies virus (RABV)	9105USA	Fox	USA	1991	 	Fox brain	GU815998
Rabies virus (RABV)	9233GAB	Dog	Gabon	1992	 	Dog brain	GU815999
Rabies virus (RABV)	93127FRA	Fixed strain	France	?	 	Mouse brain	GU816000
Rabies virus (RABV)	9503TCH	Fixed strain (Vnukov o, SAD)	Tchekosl ovakia	?	 	Mouse brain	GU816001
Rabies virus (RABV)	9737POL	Raccoon dog	Poland	1997	 	Mouse brain	GU816002
Rabies virus (RABV)	Challenge Virus Strain (CVS_IP13)	Fixed strain			 	Mouse brain	GU816003
Rabies virus (RABV)	ERA	Fixed strain			 	Mouse brain	GU816005
Rabies virus (RABV)	LEP	Fixed strain			 	Chicken embryo fibroblasts	GU816004
Vesiculovirus							

Vesicular stomatitis Indiana Orsay virus (VSIV) (0503FRA) Fixed ------BSR cells^c GU816006 strain

^a Classification and names of viruses correspond to approved virus taxomony according to the International Committee on Taxonomy of Viruses

database (ICTVdb). Names of viruses in italic correspond to approve virus and and of the international commute on raxonomy of viruse database (ICTVdb). Names of viruses in italic correspond to validated virus species. ^b Position according to the reference Pasteur virus genome (NC_001542), after alignment of all the tiled sequences with the reference sequence. ^c A clone of baby hamster kidney cell line (BHK-21).

Genus or group ^a	Species and name ^a	UA/TS/ UC ^b	Reference no.	Host species/vector	Tiled region ^c	Length (bp)	Biological samples tested	Origin of samples	Year of first isolation	GenBank accession no.
Origin of tiled sequences								•		
Lyssavirus										
	Genotype 1 Rabies virus (RABV)		PV	Vaccine	7040- 7977	937				NC_001542
	Genotype 2 Lagos bat virus (LBV)		8619NGA	Bat : Eidolon helvum	7040- 7977	937		Nigeria	1956	EU293110
	Genotype 3 Mokola virus (MOKV)		MOKV	Cat	7040- 7977	937		Zimbab we	1981	NC_006429
	Genotype 4 Duvenhage virus (DUVV)		94286SA	Bat : <i>Minopterus</i> species	7040- 7977	937		South Africa	1981	EU293120
	Genotype 5 European		8918FRA	Bat : Eptesicus	7040-	937		France	1989	EU293112

Table 2: Description of virus species belonging to the *Rhabdoviridae* used for selection of tiled sequences and for validation of the PathogenID v2.0 microarray.

	bat lyssavirus 1 (EBLV-1)		serotinus	7977				
	Genotype 6 European bat lyssavirus 2 (EBLV-2)	9018HOL	Bat : Myotis dasycneme	7040- 7977	937	 The Netherla nds	1986	EU293114
	Genotype 7 Australian bat lyssavirus (ABLV)	ABLh	Human	7040- 7977	937	 Australia	1986	AF418014
Vesiculovirus								
	Chandipura virus (CHPV)	I 653514	Human	7040- 7981	935	 India	1965	AJ810083
	Isfahan virus (ISFV)	91026-167	Phlebotomus papatasi	7040- 7981	935	 Iran	1975	AJ810084
	Vesicular stomatitis New Jersey virus (VSNJV)	VSV NJ- O	Bos taurus, equine / Culex nigripalpus, Culicoides species, Mansonia indubitans	7040- 7981	935	 USA	1949	AY074804
	Vesicular stomatitis	VSVLMS		7040- 7981	935	 		K02378

	Indiana virus (VSIV) Perinet virus (PERV)	TS	Ar Mg 802	Anopheles coustani, Culex antennatus, Culex gr. pipiens, Mansonia uniformis, Phlebotomus barantansis	7089- 7502	405	 Madagas car	1978	AY854652
	Spring viremia of carp virus (SVCV)	TS	VR-1390	Cyprinus carpio	7040- 7981	935	 Yougosl avia	1971	U18101
Ephemerovirus	Adelaide River virus (ARV) Bovine ephemeral fever virus (BEFV)		DPP 61 BB7721	Bos taurus Bos taurus	7089- 7502 7089- 7502	408 408	 Australia ?	1981 1968	AY854635 AY854642
	Kimberley virus (KIMV)	TS	CS 368	Bos taurus	7089- 7502	408	 Australia	1980	AY854637
	Kotonkan virus ^d (KOTV)	UA	Ib Ar23380	Culicoides species	7089- 7502	408	 Nigeria	1967	AY854638

odvirus									
	Almpiwar group Almpiwar virus (ALMV)	UA	MRM405 9	Ablepharus boutonii virgatus	7089- 7502	411	 Australia	1966	AY854645
	Humpty doo virus (HDOOV)	UA	CS 79	Lasiohelea species	7089- 7502	411	 Australia	1975	AY854643
	Oak-Vale virus (OVRV)	UA	CS 1342	Culex species	7089- 7502	408	 Australia	1981	AY854670
	Hart Park group								
	Flanders virus (FLANV)	UA	61-7484	Culiseta melanura, Culex species / Seiurus aurocapillus Culiacides	7089- 7502	410	 USA	1961	AF523199
	Ngaingan virus (NGAV)	UA	NRM1455 6	<i>brevitarsis /</i> wallabies, kangaroos, cattle	7089- 7502	408	 Australia	1970	AY854649
	Parry Creek virus (PCRV)	UA	OR 189	Culex annulirostris	7089- 7502	408	 Australia	1972	AY854647
	Wongabel	UA	CS 264	Culicoides	7089-	408	 Australia	1979	AY854648

Other dimarhabody es^d

JVI Accepts published online ahead of print

	virus (WONV)			austropalpalis	7502				
	Le Dantec and Kern Canyon group								
	Fukuoka virus (FUKV)	UA	FUK-11	Culicoides punctatus	7089- 7502	408	 Japan	1982	AY854651
	Le Dantec virus (LDV)	UA	DakHD 763	Human	7089- 7502	408	 Senegal	1965	AY854650
Other animal	<i>Tibrogarga</i> <i>n group</i> Tibrogargan virus (TIBV)	UA	CS 132	<i>Culicoides</i> <i>brevitarsis,</i> water buffaloes, cattle	7089- 7502	408	 Australia	1976	AY854646
rhabdoviruses									
	Tupaia rhabdovirus (TUPV)	UA	TRV 1591	Tupaia belangeri	7089- 7502	408	 Thailand	?	NC_007020
	Sigma virus (SIGMAV)	UA	234HRC	Drosophila melanogaster	6220- 6642	408	 ?	?	X91062
	Sea trout rhabdovirus (STRV)	UC	28/97	Salmo trutta trutta	7108- 7576	415	Sweden	1996	AF434992

Tested rhabdovirus species

1

Lyssavirus

Genotype 1							
Rabies virus (RABV)	93127FR A	Fixed strain	 	Mouse brain	France	?	GU816000
Rabies virus (RABV)	8764THA	Human	 	Human brain	Thailand	1983	EU293111
Rabies virus (RABV)	08339FR A	Human (probably contamined by a bat)	 	Human saliva	France (French Guyana)	2008	GU816007
Rabies virus ^h (RABV)	07029SEN	Human	 	Skin biopsy	Senegal	2006	
Genotype 2 Lagos bat virus (LBV)	8619NGA	Bat : Eidolon helvum	 	Mouse brain	Nigeria	1956	EU293110
Genotype 3 Mokola virus (MOKV)	86100CA M	Shrew	 	Mouse brain	Cameroo n	1981	NC_006429
Genotype 4 Duvenhage virus (DUVV)	86132SA	Human	 	Mouse brain	South Africa	1971	EU293119

Genotype 5 European

bat lyssavirus 1 subtype a (EBLV-1a) European bat lyssavirus 1 subtype a (EBLV-1b) European bat lyssavirus 1 subtype b (EBLV-1b)

Genotype 6 European bat

lyssavirus 2 (EBLV-2)

Genotype 7

Australian bat lyssavirus (ABLV)

08341FR A	Bat : Eptesicus serotinus	 	Bat brain	France	2008	GU816009
8918FRA	Bat : Eptesicus serotinus	 	Mouse brain	France	1989	EU293112
9018HOL	Bat : Myotis dasycneme	 	Mouse brain	Holland	1986	EU293114
9810AUS	Bat	 	Mouse brain	Australia	?	GU816008

Cat brain

France

2007

EU626552

Genotype 8

(tentative species)

37/59

Cat

(contaminated

by a bat)

07240FR

Α

	Dakar bat lyssavirus (DBLV)	UC	0406SEN (AnD 42443)	Bat : Eidolon helvum	 	Mouse brain	Senegal	1985	EU293108
	Not assigned West Caucasian Bat Virus (WCBV)	UC		Bat : Myotis schreibersi	 	Plasmid ^e	Russia	2002	EF614258
Vesiculovirus	** * *								
	Vesicular stomatitis Indiana virus (VSIV)		Orsay (0503FRA)	?	 	BSR cells ^f	?	?	GU816006
	Boteke virus (BTKV)	TS	DakArB 1077 (0417RCA)	Coquillettidia maculipennis	 	Mouse brain	Central African Republic	1968	GU816014
	Jurona virus (JURV)	TS	BeAr 40578 (0414BRE	Haemagogus spegazzinii	 	Mouse brain	Brazil	1962	GU816024
	Porton's virus (PORV)	TS	, 1643 (0416MA L)	Mansonia uniformis	 	Mouse brain	Malaysia (Sarawak)	?	GU816013
Ephemerovirus	Kotonkan virus ^d	UA	Ib Ar23380	Culicoides species	 	Mouse brain	Nigeria	1967	AY854638

(KOTV) (9145NIG) Kimberley Mouse virus TS CS 368 Bos taurus Australia 1980 AY854637 brain (KIMV) Other animal rhabodviruses Hart Park group Kamese MP 6186 Aedes Central virus (KAMV) Mouse UA (08343RC africanus, African 1967 GU816011 brain À) Culex species Republic Aedes abnormalis, Mossuril Central SA Ar 1995 Culex species / virus Mouse African 1959 GU816012 UA Andropadus _... (MOSV) brain Republic (0418SA) virens , , Gambia Coliuspasser macrourus Kolongo and Sandjimba *group* Sandjimba DakAnB Central 373d Acrocephalus Mouse virus UA African 1970 GU816019 (07244RC (SJAV) schoenobaenus brain Republic A)

Le Dantec

prid	
Ч	
ahead	
online	
published	
/I Accepts	

i c

and Kern Canyon group								
Keuraliba virus (KEUV)	UA	DakAnD 5314 (9715SEN ,	Tatera kempi, Taterillus species	 	Mouse brain	Senegal	1968	GU816021
Nkolbisson virus (NKOV)	UA	Ar Y 31/65 (0425CA M)	Aedes species, Eretmapodites species, Culex telesilla	 	Mouse brain	Ivory Coast, Cameroo n	1965	GU816022
Ungrouped								
Garba virus ^g (GARV)	UA	DakAnB 439a (0422RCA	Corythornis cristata, Nectarina pulchellabelan geri	 	Mouse brain	Central African Republic	1970	GU816018
Nasoule virus ^g (NASV)	UA	DakAnB 4289a (0410RCA)	Andropadus virens	 	Mouse brain	Central African Republic	1973	GU816017
Ouango virus ^g (OUAV)	UA	DakAnB 1582a (9718RCA)	Ploceus melanocephalu s	 	Mouse brain	Central African Republic	1970	GU816015
Bimbo virus ^g (BBOV)	UA	DakAnB 1054d (9716RCA)	Euplectes afra	 	Mouse brain	Central African Republic	1970	GU816016
Bangoran	UA	DakArB	Turdus	 	Mouse	Central	1969	GU816010

pr
оf
ahead
online
published
Accepts
$\overline{}$
\leq

virus (BGNV)		2053 (0424RCA	libonyanus / Culex perfuscus		brain	African Republic		
Gossas virus ^h (GOSV)	UA) DakAnD 401 (08344SE N)	<i>Tadarida</i> species	 	Mouse brain	Senegal	1964	NA ⁱ

^a Unless stated, the classification and names of viruses correspond to approved virus taxomony according to the International Committee on Taxonomy of Viruses database (ICTVdb). Names in italic correspond to validated virus species.

^b UA : unassigned, TS : tentative species, UC : unclassified (not found in the ICTVdb).

 $^{\circ}$ Position according to the reference Pasteur virus genome (NC_001542), after alignment of all the tiled sequences with the reference sequence (except for tiled sequences from ungrouped rhabdovirus TUPV and SIGMAV which where where aligned independently with the reference sequence). ^d Taxonomical classification according to (6).

^e A 977 nucleotides fragment of the polymerase gene (from 7020 to 7997 according to the reference Pasteur virus genome (NC_001542)) was A 977 increated ragment of the polymerase gene (irom 7020 to 7997 according to the reference Pasteur virus genome (NC_ synthetized in vitro then cloned into pCR2.1 plasmid (Operon). ^f A clone of baby hamster kidney cell line (BHK-21). ^g Not detected using PathogenID v2.0 microarray but amplified by PCR or nested PCR using consensus or specific primers. ^h Not detected using PathogenID v2.0 microarray neither amplified by PCR or nested PCR using consensus or specific primers.

ⁱ NA : Not applicable.

Table 3: Level of taxonomic identification of virus species among the genus *Lyssavirus* based on lyssavirus sequences tiled on the PathogenID_v2.0 microarray.

Strain	s of lyssavirus	tested	Results from lyssavirus sequences tiled								
Genotype (abbreviation)			1 (RABV)	2 (LBV)	3 (MOKV)	4 (DUVV)	5 (EBLV-1)	6 (EBLV-2)	7 (ABLV)		
	Isolate		PV	8619NGA	MOKV	94286SA	8918FRA	9018HOL	ABLV		
		Base call rate ^a	95.0	3.8	4.6	6.2	8.0	9.0	6.7		
	93127FRA	Identification ^b	Α	С	В	Α	Α	Α	В		
1 (DADV)		Divergence ^c	0.2	25.6	24.8	22.8	23.2	21.0	22.0		
I (KADV)		Base call rate	32.6	5.4	5.7	7.0	6.0	3.3	9.0		
	8764THA	Identification	Α	Α	В	С	Α	Α	В		
		Divergence	13.7	24.3	24.9	22.7	22.9	21.2	20.7		
		Base call rate	2.7	96.6	11.1	6.9	7.1	5.3	6.7		
2 (LBV)	8619NIG	Identification	Neg	Α	Α	Α	Neg	Neg	В		
		Divergence	25.8	0.0	22.3	22.8	25.2	23.8	23.3		
		Base call rate	2.7	7.2	56.3	8.1	7.0	7.7	3.6		
3 (MOKV)	86100CAM	Identification	Α	Α	Α	Α	Α	Α	В		
		Divergence	24.9	22.5	10.2	22.0	23.6	22.2	24.5		
		Base call rate	3.9	1.1	1.4	97.3	0.6	2.5	5.6		
4 (DUVV)	86132SA	Identification	Α	Neg	Neg	Α	Α	Α	Neg		
		Divergence	23.2	22.8	22.2	6.0	20.6	21.6	21.9		
5 (EBLV-1)	8918FRA	Base call rate	8.1	6.9	15.2	13.3	93.8	7.8	4.8		
		Identification	В	А	Α	Α	Α	А	Neg		

		Divergence	23.8	25.5	23.8	20.7	0.6 ^d	23.4	22.1
		Base call rate	5.7	2.1	3.5	6.5	4.1	98.4	8.7
6 (EBLV-2)	9018HOL	Identification	Neg	Neg	В	Α	В	Α	Α
		Divergence	21.2	23.8	23.5	21.7	23.3	0.0	22.3
		Base call rate	8.4	8.3	1.4	12.9	3.8	11.3	94.9
7 (ABLV) 9810AU	9810AUS	Identification	В	Α	Neg	Α	В	В	Α
		Divergence	22.5	23.7	24.4	21.6	22.1	22.4	1.6
		Base call rate	19.3	63.5	29.4	16.3	22.8	18.3	19.5
8 ^e (DBLV)	0406SEN	Identification	Α	Α	Α	Α	Α	Α	Α
		Divergence	25.0	20.1	21.5	23.4	23.5	22.8	23.8
Non classified W		Base call rate	25.3	28.3	32.7	26.9	26.5	23.8	24.5
	WCBV	Identification	С	А	Α	Α	Α	Α	Α
		Divergence	25.7	23.8	24.2	24.9	24.6	24.8	25.9

^a Percentage of the base calls generated from full-length tiled sequences. ^b Taxonomic identification according to:

A = identification at the species or isolate level when a unique best hit corresponds to expected species or isolate

B = identification at the species of isolate level when a unique best int corresponds to expected species of isolate<math>B = identification at the genus level when multiple best viral hits exist and correspond to the genus*Lyssavirus* <math>C = identification at the family level when multiple best viral hits exist and correspond to genera of the family*Rhabdoviridae*

Neg = negative or inaccurate identification when BLAST query is not possible or when multiple best hits and some or all of them correspond to other viral families, respectively

^c Percentage of nucleotide divergence (based on a 937 nucleotide region of the polymerase gene, position 7040-7977 according to the reference

Pasteur virus genome (NC_001542). ^d The tiled sequence of 8918FRA correspond to a preliminary result of sequencing and the complete genome of this virus strain was obtained latter (EU293112), which may explain the nucleotide differences (n=7) between those two sequences.

^e Tentative genotype.

In grey: results obtained using the sequence belonging to the same species tiled on the array (homonymous sequence).

Strains of rhabdovirus tested			Results from specific rhabdovirus sequences tiled										
Genus				Vesiculovirus				Ephemerovirus				Lyssavirus	
	Isolate (reference)		CHPV	ISFV	PERV	SVCV	VSIV	VSNJV	ARV	BEFV	KIMV	KOTV	RABV (PV)
Vesiculovirus VSIV (0503FRA)	Base call rate ^a	1.2	4.1	1.0	1.0	98.6	2.9	0	0	0	0	0	
	(0503FRA)	Score ^b	Neg	Neg	Neg	Neg	Α	Α	Neg	Neg	Neg	Neg	Neg
KIMV ^c	Base call rate	1.9	1.1	0	0	0.3	0.3	9.4	7.3	70.6	9.1	1.4	
	(CS 368)	Score	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Α	Neg	Neg
Ephemerovirus KOTV (Ib Ar2338 9145NIG	KOTV ^d (Ib Ar23380.	Base call rate	6.6	3.8	5.7	3.2	3.7	7.2	8.8	5.2	3.4	100	2.1
	9145NIG)	Score	Neg	Neg	Neg	Neg	Neg	С	Neg	Neg	Neg	Α	Neg
Lyssavirus RAE (93127)	RABV	Base call rate	0.3	1.2	2.6	1.5	0	0	0.1	0	0.1	2.3	95.0
	(93127FRA)	Score	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Α

Table 4: Level of taxonomic identification of virus species among the genera Vesiculovirus and Ephemerovirus based on vesiculovirus and ephemerovirus sequences tiled on the PathogenID_v2.0 microarray.

^a Percentage of the base calls generated from full-length tiled sequences. ^b Taxonomic identification according to:

A = identification at the species or isolate level when an unique best hit corresponds to expected species or isolate

C = identification at the family level when multiple best viral hits exist and correspond to genera of the family Rhabdoviridae

Neg = negative or inaccurate identification when BLAST query is not possible or when multiple best hits exist and some or all of them correspond to other viral families.

In grey: results obtained using the sequence belonging to the same species or isolate tiled on the array (homonymous sequence).

^c TS : tentative species, according to the International Committee on Taxonomy of Viruses database (ICTVdb). ^d Taxonomical classification according to (6).

Strain	s of lyssavirus t	ested	Strategy of analysis						
Genotype (Abbreviation)	Strain tested		Use of the prototype sequence	Use of the consensus sequence (based all tiled sequences)	Used of consensus sequence (excluding the prototype sequence)				
		Base call rate ^a	95.0	96.3	32.7				
	93127FRA	BLAST score ^b	791	801	38				
1 (RABV)		Accuracy ^c	100	99.9	95.9				
		Base call rate	32.6	47.4	26.7				
	8764THA	BLAST score	46	64	31				
		Accuracy	94.8	99.1	98.4				
2 (LBV)		Base call rate	96.6	96.4	28.1				
	8619NIG	BLAST score	816	814	39				
		Accuracy	99.9	99.9	97.7				
		Base call rate	56.3	67.4	28.4				
3 (MOKV)	86100CAM	BLAST score	66	112	64				
		Accuracy	98.2	99.8	98.5				
		Base call rate	97.3	97.3	18.1				
4 (DUVV)	86132SA	BLAST score	843	833	20				
		Accuracy	99.9	99.8	96.4				
		Base call rate	93.8	96.0	41.1				
5 (EBLV-1)	8918FRA	BLAST score	757	807	83				
		Accuracy	100	100	97.9				
6 (EBLV-2)	9018HOL	Base call rate	98.4	98.8	26.8				

Table 5: Identification of virus species among the genus Lyssavirus based on lyssavirus sequences tiled on the PathogenID_v2.	.0
microarray and using the consensus sequence determination strategy.	

		BLAST score	871	879	44
		Accuracy	100	99.9	99.6
		Base call rate	94.9	95.6	29.7
7 (ABLV)	ABLV	BLAST score	749	741	40
		Accuracy	100	99.9	94.5
		Base call rate	NA	75.9	NA
8 ^e (DBLV)	0406SEN	BLAST score	NA	82	NA
		Accuracy	NA	91.8	NA
? WC		Base call rate	NA	60.9	NA
	WCBV	BLAST score	NA	56	NA
		Accuracy	NA	97.3	NA
		· · · · · ·			•

^a Percentage of the base calls generated from full-length tiled sequences. ^b BLAST score (bit score), obtained after BLAST query on a local viral and bacterial database using the consensus sequence determination strategy with m = 12 (minimum nucleotide length), N = 10 (maximum undetermined nucleotides content). Default BLAST parameters, except for the minimum length word length (7 nucleotides), the expect threshold (increased from the default of 10 to 100,000), and the 'low complexity level filter' (-F, turned off). All the BLAST scores indicate a correct identification at the species or isolate level (i.e., unique best hit corresponds to the expected species or isolate).

^c Percentage of correct nucleotide identification, compared to the sequence obtained after classical sequencing of the corresponding lyssavirus ^d NA: Not applicable. ^e Tentative species.

Table 6 : Description and final classification of rhabdovirus species used for phylogenetic analysis.

Genus and name ^a	UA/TS/UC ^b	Abbrevi ation	Reference no. (strain)	Princpal host species/vector ^c	Origin of samples	Year of first isolation	GenBank accession no.
Lyssavirus (Genotype)			· · ·	•	•		
Rabies virus (Gt 1)		RABV	9001FRA	Dog bitten by a bat	French Guyana	1990	EU293113
Rabies virus (Gt 1)		RABV	9147FRA	Fox	France	1991	EU293115
Rabies virus (Gt 1)		RABV	8743THA	Human	Thailand	1983	EU293121
Rabies virus (Gt 1)		RABV	9704ARG	Bat : <i>Tadarida</i> brasiliensis	Argentina	1997	EU293116
Rabies virus (Gt 1)		RABV	9706CHI	Vaccine AG	China		AY854663
Rabies virus (Gt 1)		RABV	9702IND	Human	India	1997	AY854665
Lagos bat virus (Gt 2)		LBV	8619NGA	Bat : Eidolon helvum	Nigeria	1956	EU293110
Mokola virus (Gt 3)		MOKV	MOKV	Cat	Zimbabwe	1981	NC_006429
Mokola virus (Gt 3)		MOKV	86100CAM	Shrew	Cameroon	1974	EU293117
Mokola virus (Gt 3)		MOKV	86101RCA	Rodent	Republic of Central Africa	1981	EU293118
Duvenhage virus (Gt 4)		DUVV	94286SA	Bat : <i>Miniopterus</i> species	South Africa	1981	EU293120
Duvenhage virus (Gt 4)		DUVV	86132SA	Human	South Africa	1971	EU293119
European bat lyssavirus 1 (Gt 5)		EBLV-1	8918FRA	Bat : <i>Eptesicus</i> serotinus	France	1989	EU293112
European bat lyssavirus 1 (Gt 5)		EBLV-1	08120FRA	Bat : <i>Eptesicus</i> serotinus	France	2008	EU626551
European bat lyssavirus 2 (Gt 6)		EBLV-2	9018HOL	Bat : Myotis dasycneme	The Netherlands	1986	EU293114
European bat lyssavirus 2 (Gt 6)		EBLV-2	9337SWI	Bat : Myotis	Switzerland	1993	AY854657

рг	
of	
ahead	
online	
published	
Accepits	

int

Australian bat lyssavirus (Gt 7) Australian bat lyssavirus (Gt 7)		ABLV ABLV	ABLh ABLb	Human Bat : <i>Pteropus</i> species	Australia Australia	1986 1996	AF418014 NC_003243
Dakar bat lyssavirus (proposed Gt 8)	UC	DBLV	0406SEN (AnD 42443)	Bat : Eidolon helvum	Senegal	1985	EU293108
Dakar bat lyssavirus (proposed Gt 8)	UC	DBLV	KE131	Bat : Eidolon helvum	Kenya	2007	EU259198
Irkut virus (proposed Gt 9)	UC	IRKV		Bat : Murina leucogaster	Russia	2002	EF614260
Ozernoe virus (proposed Gt 9)	UC	IRKV		Human	Russia	2007	FJ905105
Aravan virus Khujand virus	UC UC	ARAV KHUV		Bat : <i>Myotis blythi</i> Bat : <i>Myotis mystacinus</i>	Kyrgyzstan Tajikistan	1991 2001	EF614259 EF614261
West Caucasian bat virus	UC	WCBV		Bat : Miniopterus schreibersii	Russia	2002	EF614258
Vesiculovirus							
Chandipura virus		CHPV	I 653514	Human ; Domestic animals ^d ; Hedgehog : <i>Atelerix</i> species ; Dipterian :	India	1965	AJ810083
				Phiebotomus species			
Cocal virus		COCV	TRVL 40233	Livestock : equine, bovine ; Mites : <i>Gigantolaelaps</i> species	Trinidad and Tobago: Trinidad	1961	EU373657
Cocal virus Isfahan virus		COCV ISFV	TRVL 40233 91026-167	Livestock : equine, bovine ; Mites : <i>Gigantolaelaps</i> species Dipteran : <i>Phlebotomus papatasi</i>	Trinidad and Tobago: Trinidad Iran	1961 1975	EU373657 AJ810084
Cocal virus Isfahan virus Piry virus		COCV ISFV PIRYV	TRVL 40233 91026-167 BeAn 24232 (0413BRE)	Interonomus species Livestock : equine, bovine ; Mites : Gigantolaelaps species Dipteran : Phlebotomus papatasi Human ; Opossum : Philander opossum	Trinidad and Tobago: Trinidad Iran Brazil	1961 1975 1960	EU373657 AJ810084 GU816023

daubentonii

pri	
of	
e ahead	
online	
published	
Accepis	
IVL	

Ĩ

Vesicular stomatitis New Jersey virus		VSNJV	VSV NJ-O	Livestock : Several species including <i>Bos</i> <i>taurus</i> , equine ; Dipterans : Several species including <i>Culex</i> <i>nigripalpus</i> , <i>Culicoides</i> species, <i>Mansonia</i> <i>indubitans</i>	Utah, USA	1949	AY074804
Vesicular stomatitis New Jersey virus		VSNJV	VSV NJ-H	Elvestock : Several species including <i>Sus</i> <i>scrofa</i> ; Dipterans : Several species including <i>Culex</i> <i>nigripalpus</i> , <i>Culicoides</i> species, <i>Mansonia</i> <i>indubitans</i>	Georgia, USA	1952	AY074803
Vesicular stomatitis Indiana virus		VSIV	Mudd-Summers (MS)	Bovine : Bos taurus	Indiana, USA	1925	EU849003
Vesicular stomatitis Indiana virus		VSIV	85CLB	Bovine	Colombia	1985	AF473865
Vesicular stomatitis Indiana virus		VSIV	98COE	Equine	Colorado, USA	1998	AF473864
Vesicular stomatitis Alagoas virus		VSAV	Indiana 3	Livestock : equine (mule), Bos taurus ; Dipterans : Phlebotomus species	Brazil	1964	EU373658
Jurona virus ^e	TS	JURV	BeAr 40578 (0414BRE)	Dipteran : Haemagogus spegazzinii	Brazil	1962	GU816024

Perinet virus	TS	PERV	Ar Mg 802	Dipterans : Anopheles coustani, Culex antennatus, Culex gr. pipiens, Mansonia uniformis, Phlebotomus berentensis	Madagascar	1978	AY854652
Pike fry rhabdovirus	TS	PFRV	F4	Fish : <i>Esox lucius</i>	The Netherlands	1972	FJ872827
<i>Scophthalmus maximus</i> rhabdovirus	UC	SMRV	QZ-2005	Fish : <i>Scophthalmus</i> <i>maximus</i>	China	?	AY895167
Spring viremia of carp virus	TS	SVCV	Fijan_cell (VR-1390, isolated from fat head minnow cells)	Fish : Cyprinus carpio	Yougoslavia	1971	AJ318079
Spring viremia of carp virus	TS	SVCV	Fijan_tissue (VR-1390, isolated from tissues of diseased	Fish : Cyprinus carpio	Yougoslavia	1971	U18101
Spring viremia of carp virus	TS	SVCV	common carp) BJ0505-2	Fish : <i>Cyprinus carpio</i>	China	2005	EU177782
Ephemerovirus		ADV	DDD 61	Povino · Pos taurus	Australia	1081	1 2 2 5 1 6 2 5
Parrimah virus		DDMV	DDD 62	Bovine : Bos taurus	Australia	1081	A V 85/626
Derrinan virus Doving aphamaral favor virus		DEEV	Cs 1022	Dovine : Dos taurus	Australia	1901	A 1 854050
Bovine ephemeral fever virus Bovine ephemeral fever virus		BEFV	Cs 42	Dipteran : Anopheles bancrofti	Australia	1975	AY854639
Bovine ephemeral fever virus		BEFV	BB7721	Bovine : Bos taurus	Australia	1968	NC_002526
Kimberley virus	TS	KIMV	CS 368	Bovine : Bos taurus	Australia	1980	AY854637
V 1	TIA	KOTV	Th A = 22280	Diptoron · Culiagidas	Nigorio	1067	A V 85/628

U C
of I
ahead
online
published
ots
l Acce
/

¹C

Almpiwar group Almpiwar virus	UA	ALMV	MRM 4059	Mammals ^d : bovine, equine, ovine, kangaroo, bandicoot, human ; Birds ^d ; Lizard: <i>Ablepharus</i> <i>boutonii virgatus</i> and other shink ^d	Australia	1966	AY854645
Charleville virus	UA	CHVV	Ch 9824	Human ^a ; Dipteran : <i>Phlebotomus</i> and <i>Lasiohelea</i> species	Australia	1969	AY854644
Charleville virus	UA	CHVV	Ch 9847	Human ^a ; Dipteran : <i>Phlebotomus</i> and <i>Lasiohelea</i> species	Australia	1969	AY854672
Humpty Doo virus	UA	HDOOV	CS 79	Dipteran : <i>Lasiohelea</i> species, <i>Culicoides</i> marksi	Australia	1975	AY854643
Hart Park group							
Bangoran virus ^e	UA	BGNV	DakArB 2053 (0424RCA)	Bird : <i>Turdus</i> <i>libonyanus</i> ; Dipteran : <i>Culex</i> <i>perfuscus</i> Birds : <i>Seiurus</i>	Central African Republic	1969	GU816010
Flanders virus	UA	FLANV	61-7484	aurocapillus, Agelaius phoeniceus ; Dipterans : Culiseta	New York, USA	1961	AF523199

prìi	
юľ	
ahead	
online	
published	
Accepis	
IVL	

Kamese virus ^e	UA	KAMV	MP 6186 (08343RCA)	species Dipterans : Aedes africanus, Culex species including Culex annulioris	Uganda, Republic of Central Africa	1967	GU816011
Mossuril virus ^e	UA	MOSV	SA Ar 1995 (0418SA)	Birds : Andropadus virens, Coliuspasser macrourus ; Dipterans : Aedes abnormalis, Culex species including Culex sitiens	Mozambiqu e, Republic of Central Africa, South Africa, Bostwana, Guinea	1959	GU816012
Ngaingan virus	UA	NGAV	MRM 14556	Mammals ^d : wallabies, kangaroo, bovine ; Dipteran : <i>Culicoides</i> <i>brevitarsis</i>	Australia	1970	AY854649
Parry Creek virus	UA	PCRV	OR 189	Dipteran : Culex annulirostris	Australia	1972	AY854647
Porton's virus ^e	TS (VSV)	PORV	1643 (0416MAL)	Dipteran : <i>Mansonia</i> <i>uniformis</i> Sea birds ^d :	Malaysia (Sarawak)	?	GU816013
Wongabel virus	UA	WONV	CS 264	Dipteran : <i>Culicoides</i> austropalpalis	Australia	1979	AY854648
Le Dantec group							
Fukuoka virus	UA (Kern Canyon Group)	FUKV	FUK-11	Bovine ; Dipteran : <i>Culicoides</i> <i>punctatus</i> , <i>Culex</i> <i>tritaeniorhynchus</i>	Japan	1982	AY854651
Keuraliba virus ^e	UA	KEUV	DakAnD 5314	Rodents : Tatera	Senegal	1968	GU816021

melanura, Culex

Le Dantec virus Nkolbisson virus ^e	UA UA (Kern Canyon Group)	LDV NKOV	(9715SEN, 0420SEN) DakHD 763 Ar YM 31/65 (0425CAM)	species including Tatera kempi, Taterillus species Human Dipteran : Aedes species, Eretmapodites species including Eretmapodites leucopus, Culex telesilla)	Senegal Ivory Coast, Cameroon	1965 1965	AY854650 GU816022
Moussa group				Distoron - Culou			
Moussa virus	UC	MOUSV	C23	decens	Ivory Coast	2004	FJ985748
Moussa virus	UC	MOUSV	D24	Dipteran : <i>Culex</i> species	Ivory Coast	2004	FJ985749
Sandjimba group							
Bimbo virus ^e	UA	BBOV	DakAnB 1054d (9716RCA)	Bird : <i>Euplectes afra</i>	Central African Republic	1970	GU816016
Boteke virus ^e	TS (VSV)	BTKV	DakArB 1077 (0417RCA)	Dipteran : Coquillettidia maculipennis	Central African Republic	1968	GU816014
Garba virus ^e	UA	GARV	DakAnB 439a (0422RCA)	Birds : <i>Corythornis</i> <i>cristata</i> , <i>Nectarina</i> <i>pulchella</i>	Central African Republic	1970	GU816018
Kolongo virus	UA	KOLV	DakAnB 1094d (9717RCA)	Birds : <i>Euplectes afra</i> , <i>Ploceus cucullatus</i>	Central African Republic	1970	GU816020
Nasoule virus ^e	UA	NASV	DakAnB 4289a (0410RCA)	Bird : <i>Andropadus</i> virens	Central African	1973	GU816017

				Ferral pigs ^d ;	Republic		
Oak-Vale virus	UA	OVRV	CS 1342	Dipteran : Aedes vigilax, Culex species including Culex edwardsi)	Australia	1981	AY854670
Ouango virus ^e	UA	OUAV	DakAnB 1582a (9718RCA)	Bird : <i>Ploceus</i> <i>melanocephalus</i>	Central African Republic	1970	GU816015
Sandjimba virus	UA	SJAV	DakAnB 373d (07244RCA)	Bird : Acrocephalus schoenobaenus	Central African Republic	1970	GU816019
Sigma group							
Drosophila affinis sigma virus	UC	DAffSV	10	Dipterian : Drosophila affinis	New Connecticut, USA	2007	GQ410980
<i>Drosophila melanogaster</i> sigma virus	UA	SIGMA V (DMelS V)	AP30	Dipterian : Drosophila melanogaster	Florida, USA	2005	NC_013135
Drosophila melanogaster sigma virus	UA	SIGMA V (DMelS V)	НАР23	Dipterian : Drosophila melanogaster	France	?	GQ375258
Drosophila obscura sigma virus	UC	DObsSV	10A	Dipterian : Drosophila obscura	UK	2007	GQ410979
Sinistar group							
Siniperca chuatsi rhabdovirus	UC	SCRV		Fish : Siniperca chuatsi	China	?	NC_008514
Starry flounder rhabdovirus	UC	SFRV		Fish : <i>Platichthys</i>	Washington,	2000	AY450644

				stellatus	USA		
Tibrogargan group							
Tibrogargan virus	UA	TIBV	CS 132	Bovine ^a : water buffaloes, cattle ; Dipteran : <i>Culicoides</i> <i>brevitarsis</i>	Australia, New Guinea	1976	AY854646
Tupaia virus	TS (VSV)	TUPV	TRV 1591	Tree shrew : Tupaia belangeri	Thailand	?	NC_007020
Novirhabdovirus							
Hirame rhabdovirus		HIRRV	CA 9703	Fish : including Cultured korean flounders , Paralichthys olivaceus, Plecoglossus altivelis, Milio macrocephalus, Sebastes inermis	Korea	1997	NC_005093
Infectious hematopoietic necrosis virus		IHNV	HV7601				AB231660
Infectious hematopoietic necrosis virus		IHNV	WRAC strain	Fish : including salmonid, <i>Oncorhynchus</i> <i>tschawytscha</i>	Idaho, USA		NC_001652
Snakehead rhabdovirus		SHRV		Fish : including Ophicephalus striatus , Clarias bratachus, Omelactis memoratus	Thailand		NC_000903
Viral hemorrhagic septicemia virus		VHSV	KRRV9822	Fish : Japanese flounder	Japan		AB179621
Viral hemorrhagic septicemia virus		VHSV	07-71	Fish : <i>Oncorhynchus mykiss</i>	France		AJ233396

Viral hemorrhagic septicemia virus		VHSV	JF00Ehi1	Fish : <i>Paralichthys</i> <i>olivaceus</i>	Japan	2000	AB490792
Viral hemorrhagic septicemia virus		VHSV	14-58	Fish : <i>Oncorhynchus mykiss</i>	France		AF143863
Nucleorhabdovirus							
Maize mosaic virus		MMV		Plant (host) : <i>Graminae</i> including Zea mays ; Hemipterans (vector) : <i>Delphacidae</i>	USA		NC_005975
Rice yellow stunt virus		RYSV		Plant (host) : <i>Oryza</i> sativa ; Homopterans (vector) : <i>Cicadellidae</i> Plant (host) :			NC_003746
Sonchus yellow net virus		SYNV		Asteraceae including Sonchus oleraceus ; Hemipterans (vector) : Aphididae			NC_001615
Iranian maize mosaic nucleorhabdovirus	UC	IMMNV		Plant (host) : <i>Graminae</i> including Zea mays ; Hemipterans (vector) : <i>Delphacidae</i>	Iran		NC_011542
Maize fine streak virus	UC	MFSV		Plant (host) : Graminae including Zea mays ; Homopterans (vector) : Cicadellidae	Georgia, USA	1999	NC_005974
Orchid fleck virus ^f	UC	OFV	So	<i>Orchidaceae</i> including <i>Cymbidium</i> species ; Acaris (vector) : <i>Brevipalpus</i>	Japan		NC_009609

Taro vein chlorosis virus	UC	TaVCV		<i>californicus</i> Plant (host) : <i>Colocasia</i> esculenta	Fiji Islands	NC_006942
Cytorhabdovirus						
Barley yellow striate mosaic		BYSMV	Zanjan-1	Plant (host) : <i>Graminae</i> including <i>Triticum</i> species ; Hemipterans (vector) : <i>Delphacidae</i>	Iran	FJ665628
Lettuce necrotic yellows virus		LNYV	318	Plant (host) : several plant families and species including <i>Allium sativum</i> , <i>Lactuca sativa</i> ; Hemipterans (vector) :	Australia	NC_007642
Northern cereal mosaic virus		NCMV		Aphididae Plant (host) : Graminae including Hordeum vulgare ; Hemipterans (vector) : Delphacidae	Japan	NC_002251
Strawberry crinkle virus		SCV	HB-A1	Plant (host) : <i>Fragaria</i> species ; Hemipterans (vector) : <i>Aphididae</i>		AY331389
Strawberry crinkle virus		SCV	37-2	Plant (host) : <i>Fragaria</i> species ; Hemipterans (vector) : <i>Aphididae</i>		AY331388
Strawberry crinkle virus		SCV	37-1	Plant (host) : <i>Fragaria</i> species ;		AY331387

Lettuce yellow mottle virus	UC	LYMoV	Hemipterans (vector) : Aphididae Plant (host) : Lactuca sativa	France	1998	NC_011532
Taastrup group						
Faastrup virus	UC	TV	Hemipteran (potential vector) : <i>Psammotettix alienus</i>	France	1996	AY423355

^a Names of viruses in italic correspond to approved virus species by the eighth report of the International Committee on Taxonomy of Viruses database (ICTVdb). ^b UA : unassigned, TS : tentative and UC : unclassified (not found in the ICTV) species.

^c In bold : identification of the host species where the first viral isolation was obtained when data are available.

^a Serological detection only.
 ^e First identification based on nucleic acid determination and classification based on phylogenic analysis (this study).
 ^f Also tentatively classified into the new genus *Dichorhabdovirus* according to its unusual bipartite genome (20).