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Abstract

Nuclear factor (NF)-kB is a major survival pathway engaged by the Human T-Lymphotropic Virus type 1 (HTLV-1) Tax
protein. Tax1 activation of NF-kB occurs predominantly in the cytoplasm, where Tax1 binds NF-kB Essential Modulator
(NEMO/IKKc) and triggers the activation of IkB kinases. Several independent studies have shown that Tax1-mediated NF-kB
activation is dependent on Tax1 ubiquitination. Here, we identify by co-immunoprecipitation assays NEMO-Related Protein
(NRP/Optineurin) as a binding partner for Tax1 in HTLV-1 infected and Tax1/NRP co-expressing cells. Immunofluorescence
studies reveal that Tax1, NRP and NEMO colocalize in Golgi-associated structures. The interaction between Tax1 and NRP
requires the ubiquitin-binding activity of NRP and the ubiquitination sites of Tax1. In addition, we observe that NRP
increases the ubiquitination of Tax1 along with Tax1-dependent NF-kB signaling. Surprisingly, we find that in addition to
Tax1, NRP interacts cooperatively with the Tax1 binding protein TAX1BP1, and that NRP and TAX1BP1 cooperate to
modulate Tax1 ubiquitination and NF-kB activation. Our data strongly suggest for the first time that NRP is a critical adaptor
that regulates the assembly of TAX1BP1 and post-translationally modified forms of Tax1, leading to sustained NF-kB
activation.
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Introduction

Human T-Lymphotropic Virus type 1 (HTLV-1) is the

etiological agent of Adult T cell Leukemia/Lymphoma (ATL)

and of HTLV-Associated Myelopathy/Tropical Spastic Parapa-

resis (HAM/TSP) [1–3]. HTLV-1 contains a unique pX region in

the 39 portion of its genome, which encodes regulatory and

accessory proteins that are involved in viral replication and cell

proliferation. Among them, Tax1 plays a critical role by triggering

cell immortalization through various mechanisms [4], including

activation of signaling pathways such as NF-kB [5].

The NF-kB family of transcription factors plays an important

role in the regulation of cellular activation, proliferation, and

survival. A large number of stimuli including bacterial lipopoly-

saccharide (LPS), tumor necrosis factor (TNF)-a, interleukin (IL)-1

and antigens can activate NF-kB. NF-kB activity is tightly

regulated by inhibitory IkB proteins. Upon stimulation, signals

are transduced that lead to the degradation of IkB, allowing NF-

kB to translocate into the nucleus and to activate its target genes.

IkB degradation by the 26S proteasome is triggered by its

phosphorylation by a multisubunit IkB kinase (IKK) complex that

contains two homologous catalytic subunits (IKKa and IKKb) and

a regulatory subunit, NF-kB Essential Modulator (NEMO/IKKc).

An important mechanism in the NF-kB pathway is the interaction

between NEMO and K63-linked polyubiquitin chains. In the case

of TNF-a stimulation, the attachment of the polyubiquitin chains

to RIP1 serves to bring the NEMO/IKK complex to the TNF-a
receptor and is required for NF-kB activation [6]. Other studies

have shown that TCR and IL-1 stimulations induce the

attachment of K63-linked polyubiquitin chains to Bcl10 and
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IRAK1 respectively, which are required for binding to NEMO

and subsequent activation of NF-kB [7,8]. One of the main

mechanisms restricting this process is the NF-kB-mediated

induction of deubiquitinases such as A20 and CYLD [9,10].

NF-kB activation plays a critical role in HTLV-1-mediated

oncogenesis. This process occurs predominantly in the cytoplasm

where HTLV-1 Tax1 binds NEMO and triggers the activation of

IKKa and IKKb [11–13]. Tax1 can also stimulate the alternative

pathway of NF-kB activation through the IKKa-dependent

processing of NF-kB p100 precursor protein [14]. Independent

studies have shown that Tax1 ubiquitination is dependent on the

E2 ubiquitin-conjugating enzyme Ubc13 and is critical for Tax1

binding to NEMO and the subsequent NF-kB activation [15–18].

In addition, Tax1 binding protein TAX1BP1 [19,20] is involved

in the recruitment of A20 deubiquitinase and the negative control

of TNF-a-, IL-1- and LPS-mediated NF-kB activation [17],

suggesting that Tax1-dependent activation of NF-kB could also be

more complex than originally thought. Because cellular factors

other than NEMO and Ubc13 could contribute to the activation

of NF-kB by Tax1, we searched for novel interactors of Tax1 and

Tax2, the equivalent of Tax1 for HTLV-2. Here we report the

identification of NEMO-Related Protein (NRP) as a novel Tax

interactor. NRP is ubiquitously expressed and exhibits strong

homologies to NEMO (53% sequence similarity), but its function is

still unknown [21]. Mutations in its sequence have been associated

with primary open-angle glaucoma (POAG), and for this reason,

NRP was also named Optineurin for ‘‘optic neuropathy inducing’’

protein [22].

We show that both NRP and TAX1BP1 form a functional

complex with Tax1, and we demonstrate that a synergistic

interaction between TAX1BP1 and NRP contributes to Tax1-

mediated NF-kB activation.

Results

Tax2 interacts with NRP in a yeast two-hybrid screen
To identify novel binding partners of Tax proteins, we used a

standard yeast two-hybrid screening procedure. Full-length Tax1

or Tax2 proteins were fused to Gal4 DNA binding domain (Gal4-

BD) and used as baits to screen a library of human spleen cDNA

fused to Gal4 transactivation domain (Gal4-AD). Screens were

performed by mating to reach a five-time coverage of the cDNA

library complexity, and yielded 59 positive yeast colonies with

Tax1 and 36 with Tax2. Using Tax1 as bait, we retrieved three

previously known interactors of Tax1 [TAX1BP1 (2 colonies),

TAX1BP3 (37 colonies) and SRF (3 colonies)], which demon-

strates the specificity of the screen. NEMO was only found using

Tax2 as bait (2 colonies). This corresponds to a known limitation

of the two-hybrid system since numerous pairs of interacting

proteins fail to rebuild a functional transcription factor in yeast

when fused to Gal4-DB and Gal4-AD. From the screen performed

with Tax2, we essentially selected yeast colonies expressing a new

interactor of Tax: NEMO-Related Protein NRP (23 colonies).

Although various lengths of the NRP protein were encoded, the

smallest NRP fragment shown to interact with Tax2 was spanning

amino acid 411 to the C-terminus end of the protein. This led us

to test the ability of Tax1 to interact with NRP using a different

binding assay.

Both Tax1 and Tax2 proteins co-precipitate with NRP
In order to confirm Tax/NRP interaction, Tax1 and Tax2 were

co-expressed in 293T cells with VSV-tagged NRP and co-

immunoprecipitations were performed. Both Tax2 (Figure 1A,

lane 2) and Tax1 (Figure 1B, left panel, lane 3) were detected in

VSV-NRP immunoprecipitates.

The reverse experiment (i.e. immunoprecipitation of Tax1

followed by immunoblotting for VSV-NRP) confirmed the

interaction between the two proteins (Figure 1B, right panel, lane

3). We then aimed to demonstrate the interaction between Tax1

and endogenous NRP in two HTLV1-infected cell lines, C8166

and C91PL. The uninfected cell line CEM was used here as a

negative control. As expected, Tax1 could be specifically

recovered from NRP immunoprecipitates in both HTLV-1-

infected cell lines (Figure 1C, compare lanes 3 and 5 with lane

1). The specificity of these interactions was controlled using an

irrelevant antibody for the immunoprecipitation (Figure 1C, lanes

2, 4 and 6). Hence, NRP interacts with Tax1 both in transfected

and in infected cells.

In order to confirm the interaction with an alternative

biochemical method, we determined whether Tax1 and NRP

could be found in the same fractions after gel filtration (Figure 1D).

Experiments using glycerol gradients were also performed (Figure

S1). Tax1 and HA-tagged NRP were co-expressed in HeLa cells.

After gel filtration, extracts were analyzed by western blot. As

shown in Figure 1D, Tax1 was recovered from fractions 33 to 35

(Figure 1D, lower panel), corresponding to low molecular mass

fractions. This subset of Tax1 molecules essentially represents free

molecules. Tax1 was also recovered from fraction 25, suggesting

that a subset of Tax1 molecules was present in high molecular

mass complexes. HA-NRP was recovered from fractions 22 to 26

(Figure 1D, upper panel), showing that a majority of HA-NRP

molecules were found in high molecular mass complexes. Co-

fractionation of Tax1 and HA-NRP in fraction 25 indicated that

both proteins could be found in the same complexes.

These results obtained with distinct biochemical methods

support the interaction between Tax1 and NRP.

Tax1 and NRP have the same subcellular distribution
Tax1 has been described as having distinct localizations

depending on its post-translational modification status [15,16].

Ubiquitinated Tax1 was reported to localize in the cytoplasm,

more specifically in Golgi/centrosome-associated structures [18],

Author Summary

Oncogenic viruses (i.e., viruses that can induce cancer)
have usually been found to deregulate several cellular
signaling pathways controlling cell survival and prolifera-
tion. Among those, the NF-kB pathway is particularly
important. In this study, we focus on the Human T-
Lymphotropic Virus type 1 (HTLV-1), which infects immune
T cells, and is associated with the development of a severe
hematological disease, termed adult T cell leukemia. The
viral Tax oncoprotein is known to activate the NF-kB
pathway, but the precise mechanism is still under
investigation. In cells, proteins can undergo modifications
that can modulate their function. In the case of Tax, a
modified form of the protein (ubiquitinated Tax) is able to
activate the NF-kB pathway. Our aim was to identify
cellular proteins that participate in the modification of Tax,
and in turn in the regulation of its function. We show for
the first time that the cellular protein NRP/Optineurin
interacts with Tax and increases its ubiquitination, thus
leading to an enhanced NF-kB activation. We further
demonstrate that TAX1BP1, another cellular protein that
had been previously identified as a partner of Tax, also
participates in this regulation. Thus, this study uncovers
new actors of the virally induced cell signaling.

NRP Potentiates Tax Activity
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where it interacts with NEMO and induces NF-kB activation.

SUMOylated Tax1, however, was found in the nucleus [15,16].

NRP, on the other hand, is predominantly localized at the Golgi

apparatus [21]. Since Tax1 was shown to promote the relocaliza-

tion of the NEMO/IKK complex to the Golgi apparatus [23], we

suspected that NRP might also interact with Tax1 at the Golgi

apparatus. We performed a series of immunofluorescence stainings

in HeLa cells expressing a C-terminal GFP-tagged Tax1 plasmid,

which was previously demonstrated to have a subcellular

localization and an ability to activate NF-kB similar to those of

untagged Tax1 ([24] and data not shown). To evaluate whether

NRP colocalizes with Tax1-GFP and NEMO at the Golgi

apparatus, we performed a double staining for NRP and either

NEMO or GM130 in order to visualize the Golgi apparatus

(Figure 2). As previously described, Tax1-GFP showed a discrete

granular appearance in the cytoplasm, which was more intense at

the Golgi apparatus as shown by colocalization with GM130

staining (Figure 2A, green and blue). Staining for NEMO

indicated that expression of Tax1-GFP induced the recruitment

of this protein at the Golgi apparatus where both proteins

colocalize (Figure 2B, green and blue). As expected, NRP was

predominantly localized at the Golgi apparatus, and its localiza-

tion was not affected by Tax1-GFP expression (Figure 2A and B,

red). Interestingly, we also observed colocalization between Tax1-

GFP and NRP in these Golgi-associated structures (Figure 2A and

B).

Because HTLV-1 infects mainly T cells in vivo, we performed

similar immunofluorescence microscopy studies using Jurkat T

cells (Figure S2). Consistent with the results obtained in HeLa cells,

a subset of Tax1-positive cells harbored a cytoplasmic staining for

Tax1-GFP, which colocalized with NRP (Figure S2A and B, red)

and NEMO (Figure S2B, blue) in perinuclear structures that were

associated with the Golgi apparatus (Figure S2A, blue). As in

HeLa cells, we observed that Tax1-GFP expression had no effect

on NRP localization (Figure S2, compare A and C).

These results are consistent with the observed interaction

between Tax1 and NRP in vivo, and suggest that these interactions

occur at the Golgi apparatus where NEMO is recruited. Because it

has been reported that Tax1 interacts with NEMO at the Golgi

apparatus in an ubiquitin-dependent manner, we hypothesized

that a similar mechanism could be involved in the Tax1/NRP

interaction.

NRP ubiquitin-binding domain (UBD) mediates binding
to Tax1

In order to map the domain(s) of NRP involved in the binding

to Tax1, we performed co-immunoprecipitation experiments using

a series of NRP mutants. We first co-expressed Tax1 with either a

N-terminal or a C-terminal deletion mutant of NRP (Figure 3A).

Immunoprecipitation of NRP DN alone led to the recovery of

Tax1 from cell lysates (Figure 3B, upper panel, lane 3) while NRP

DC was unable to interact with Tax1 (Figure 3B, upper panel, lane

2), showing that Tax1 binds to the C-terminal part of NRP.

Immunoblotting for VSV-NRP confirmed that these mutants were

expressed at similar levels when compared to the wild-type NRP

(Figure 3B, lower panel), and both were efficiently immunopre-

cipitated with the anti-VSV antibody (Figure 3B, middle panel).

Because the C-terminal domain of NRP encompasses an

ubiquitin-binding domain (UBD) (Figure 3A), we tested the

contribution of this domain to the interaction with Tax1

Figure 1. Co-immunoprecipitation and co-fractionation of Tax and NRP. (A) 293T cells were transfected with Tax2 and VSV-NRP as
indicated. Total lysates were immunoprecipitated with an anti-VSV antibody and western blot analysis was performed using anti-Tax2 and anti-VSV
antibodies. (B) 293T cells were transfected with Tax1 and VSV-NRP as indicated. Total lysates were immunoprecipitated with an anti-VSV or anti-Tax1
antibody and western blot analysis was performed using anti-Tax1 and anti-VSV antibodies. (C) Total lysates from CEM, C8166 and C91PL cell lines
were immunoprecipitated with an anti-NRP antibody (+) or an irrelevant anti-His antibody (2) and western blot analysis was performed using anti-
NRP and anti-Tax1 antibodies. (D) HeLa cells were transfected with Tax1 and HA-NRP, and cell extracts were analyzed by gel filtration
chromatography. Fractions 16 to 40 as well as total extracts (input) were then analyzed by western blotting using antibodies directed against HA
(upper panel) or Tax1 (lower panel). Precalibration of the column is indicated beneath the fractions count (kDa).
doi:10.1371/journal.ppat.1000521.g001

NRP Potentiates Tax Activity
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(Figure 3C). Interestingly, a single point mutation in this domain

known to disrupt the binding to K63-linked polyubiquitin

(D474N) [25] was sufficient to severely reduce the interaction of

NRP with Tax1 (Figure 3C, compare lane 1 and 2). This result

suggests that NRP binding to Tax1 is mediated by an interaction

between NRP UBD and K63-linked polyubiquitin chains

conjugated to Tax1.

Ubiquitination-defective Tax1 mutants exhibit impaired
binding to NRP

Tax1 displays 10 lysine residues to which ubiquitination chains

may be linked. It has been shown that lysines 4 to 8 significantly

contribute to Tax1 polyubiquitination [15,16,26]. 293T cells were

therefore transfected with Tax1 mutants in which all (K1–10R) or

only a subset (K7–8R) of lysines were mutated into arginines.

Interestingly, lysine-less Tax1 was impaired for NRP binding

(Figure 3D, upper panel, lane 2), although this mutant was

efficiently precipitated by the anti-Tax1 antibody (Figure 3D,

middle panel, lane 2). Furthermore, the defect in NRP binding was

not observed with mutant K7–8R (Figure 3D, upper panel, lane

3). These results strongly suggest that the integrity of Tax1

acceptor sites for ubiquitin is critical for the interaction with NRP.

Taken together, these results further support the hypothesis that

NRP binds to Tax1 through polyubiquitin chains on Tax1.

Binding of NRP stabilizes Tax1 polyubiquitination
Tax1 ubiquitination is critical for its binding to the NEMO/

IKK complex and its subsequent activation [15,16,18]. Given that

NRP binds to polyubiquitinated Tax1, we wondered whether it

could modulate Tax1 polyubiquitination status, and hence its

ability to activate the NEMO/IKK complex. We thus analyzed

the effect of silencing NRP on the level of polyubiquitinated Tax1.

His-tagged Tax1 and HA-tagged ubiquitin were co-expressed in

293T cells, with a control siRNA (Figure 4A, lane 1) or with a

siRNA targeting NRP (Figure 4A, lane 2). Ni-NTA pulldown was

then performed in highly reducing and denaturating conditions, in

order to avoid any deubiquitination and to ensure that only

products covalently linked to Tax1 would be purified. By blotting

for HA-ubiquitin, we assessed the level of polyubiquitinated Tax1

in each sample, which appears as high-molecular-weight products.

When compared to control cells, the level of polyubiquitinated

Tax1 was strikingly reduced in NRP-silenced cells, (Figure 4A,

Figure 2. Colocalization of Tax1, NRP and NEMO in Golgi-associated structures in HeLa cells. HeLa cells were transfected with Tax1-GFP.
Cells were stained with an anti-NRP antibody (red) and either (A) an anti-GM130 or (B) an anti-NEMO antibody (blue). Cells were observed as
described in the Materials and Methods section. Differential interference contrast is shown on the left merge image. Scale bar = 10 mm.
doi:10.1371/journal.ppat.1000521.g002

NRP Potentiates Tax Activity
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upper panel, compare lane 1 and 2). As control, we analyzed the

level of NRP in cell lysates, and showed that it was indeed reduced

in cells transfected with NRP-directed siRNA (Figure 4A, lower

panel, compare lane 1 and 2). Thus, in the absence of NRP,

polyubiquitinated Tax1 is less abundant.

One model that could account for this observation is that

polyubiquitinated Tax1 is stabilized through its interaction with

NRP. To test whether the effect of NRP on Tax1 polyubiquitina-

tion was dependent upon the interaction between both proteins,

we performed the same type of experiments in cells over-

expressing wild-type or mutant forms of NRP (NRP DN, DC

and D474N) (Figure 4B). We predicted that wild-type NRP or

NRP DN, which are able to bind to Tax1, would stabilize

polyubiquitinated Tax1, whereas NRP DC and NRP D474N,

which have lost the potential to bind to Tax1, would not. In order

to highlight the differences among the lanes, a very short exposure

time is shown, which accounts for the weak HA signal obtained in

the absence of over-expressed NRP (Figure 4B, upper panel, lane

3). However, longer exposures revealed the presence of poly-

ubiquitinated Tax1 in this lane (data not shown). As expected, we

observed a correlation between the ability of NRP variants to bind

to Tax1, and the level of polyubiquitinated Tax1 (Figure 4B,

upper panel, compare lanes 5 and 9 with 7 and 11). However, we

also observed that the levels of polyubiquitinated Tax1 were

enhanced in cells over-expressing NRP DC or NRP D474N when

compared to cells expressing endogenous NRP only (Figure 4B,

compare lanes 7 and 11 to lane 3). This might be the consequence

of a potential residual interaction between these mutants and

Tax1.

To determine the linkage specificity of Tax1 polyubiquitination,

we used an ubiquitin mutant (HA-Ub K0), in which all lysine

residues are mutated to arginine (HA-Ub K0) and that can

therefore no longer build conventional polyubiquitin chains. As

expected, the HA-Ub K0 did not support Tax1 ubiquitination,

indicating that the high-molecular-weight products of Tax1 indeed

represented polyubiquitin chains (Figure 4B, lanes 4, 6, 8, 10 and

12). Altogether, these data suggest that NRP binds and stabilizes

the polyubiquitin chains linked to Tax1.

Figure 3. Involvement of NRP UBD and Tax1 ubiquitination in NRP/Tax1 interaction. (A) Schematic representation of NRP constructs used
in the experiment. NRP DC construct is deleted from amino acid 279 to the C-terminus of the protein, whereas NRP DN is deleted from amino acid 1
to 299. Substitution at position 474 is known to abrogate the function of the ubiquitin-binding domain (UBD). 293T cells were transfected with (B)
wild-type Tax1 and either wild-type VSV-NRP (wt), VSV-NRP DC, or VSV-NRP DN; (C) wild-type Tax1 and either wild-type VSV-NRP or VSV-NRP D474N;
(D) wild-type VSV-NRP and either wild-type Tax1 (wt) or mutant Tax1 in which the indicated lysine residues were mutated into arginine (K7–8R and
K1–10R). Lysates were immunoprecipitated with an anti-VSV or anti Tax-1 antibody as indicated and western blot analyses were performed using
anti-Tax1 and anti-VSV antibodies.
doi:10.1371/journal.ppat.1000521.g003

NRP Potentiates Tax Activity
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NRP potentiates Tax1-induced NF-kB activation
Because previous studies have suggested that Tax1 ubiquitina-

tion is critical for its ability to activate the NF-kB pathway [15,16],

we hypothesized that stabilization of Tax1 polyubiquitination by

NRP would enhance activation of this pathway. We therefore

tested the effect of increasing or decreasing NRP expression on

Tax1-induced NF-kB activation using an NF-kB reporter gene

assay (Figure 5). Jurkat cells were transfected with an NF-kB

reporter gene together with Tax1 and increasing amounts of VSV-

tagged NRP. As previously reported [5], NF-kB activity was

induced upon Tax1 over-expression, and VSV-NRP further

enhanced NF-kB activity in a dose-dependent manner

(Figure 5A, left panel). We then evaluated the effect of NRP

knockdown on Tax1-induced NF-kB activity. Compared with

control siRNA, a two-fold decrease in Tax1-mediated NF-kB

activity was observed when expression of NRP was silenced

(Figure 5B, left panel), whereas no significant impact on the basal

activity of the promoter could be measured in the absence of

Tax1.

To ensure the specificity of NRP’s effect on Tax1-mediated NF-

kB activation, we performed the same experiments using a

HTLV-1-LTR-luc reporter plasmid, which is known to be under

the control of CREB rather than NF-kB. Using this construct, no

or only a limited effect of NRP over-expression or silencing was

observed (Figure 5A, right panel, and Figure 5B, right panel). As a

control, NRP expression was determined in the presence or

absence of siRNA directed against NRP (Figure 5B, left and right

panels). Thus, NRP specifically enhances the activity of Tax1 on

the NF-kB pathway.

We also tested whether the potentiating effect of NRP on Tax1-

dependent NF-kB activity was dependent upon the interaction

between Tax1 and NRP. Because we showed that NRP-D474N

was impaired for the binding to Tax1 (Figure 3C) as well as for the

stabilization of Tax1 polyubiquitination (Figure 4B), we compared

the ability of wild-type NRP and NRP-D474N to potentiate Tax1

activity on the NF-kB reporter plasmid. As expected, NRP-

D474N had no effect on Tax1 activity when compared to wild-

type NRP, although expression levels of both constructs were

similar (Figure 5C). Taken together, these results indicate that

NRP specifically modulates Tax1-induced NF-kB activation,

possibly by stabilizing Tax1 polyubiquitination in an interaction-

dependent manner.

TAX1BP1 cooperates with NRP for binding to Tax1 and
modulation of Tax1 ubiquitination

Since we observed that NRP stabilizes Tax1 poly-ubiquitina-

tion, we wondered whether Tax1-binding protein 1 (TAX1BP1),

which is also involved in ubiquitin-dependent regulation of NF-kB,

could participate in this process. TAX1BP1 was originally

identified as a binding partner of Tax1 [19,20]. More recently,

TAX1BP1 was reported to interact with A20, Itch and RNF11 to

form a functional ubiquitin-editing complex that regulates the

ubiquitination of RIP1 and TRAF6 [27]. Thus, we hypothesized

that TAX1BP1 acts together with NRP to modulate Tax1

ubiquitination.

293T cells were cotransfected with VSV-tagged NRP, Flag-

tagged TAX1BP1 and Tax1, and immunoprecipitation of either

Tax1, Flag-TAX1BP1 or VSV-NRP was performed (Figure 6A, B

and C, respectively). Immunoprecipitates were then blotted with

anti-Flag, anti-VSV or anti-Tax1 antibodies. These experiments

confirmed that TAX1BP1 interacts with Tax1 (Figure 6A, lane 2).

In addition, we observed that TAX1BP1 also interacts with NRP

(Figure 6C, lane 4). More interestingly, the amount of TAX1BP1

associated with Tax1 was increased when NRP was co-expressed

Figure 4. Modulation of Tax1 ubiquitination by NRP. (A) 293T cells were transfected with Tax1-His and HA-ubiquitin (HA-Ub), and either with
an irrelevant siRNA directed against b-globin (control) or NRP-directed siRNA. (B) 293T cells were transfected with Tax1-His, and either wild-type HA-
Ub or lysine-less HA-Ub (HA-Ub K0), together with wild-type VSV-NRP, VSV-NRP DC, VSV-NRP DN or VSV-NRP D474N, as indicated. Ubiquitinated
forms of Tax1 were retained on Ni-NTA beads and processed for western blot analysis using anti-HA antibodies. Levels of expression of Tax1 and NRP
in total lysates were determined by western blot using anti-Tax1 and (A) anti-NRP or (B) anti-VSV antibodies.
doi:10.1371/journal.ppat.1000521.g004
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(Figure 6A, compare lanes 2 and 4). Similarly, the interaction

between NRP and Tax1 was strongly induced in the presence of

TAX1BP1 (Figure 6A, compare lanes 3 and 4) and the interaction

between NRP and TAX1BP1 was also increased by the expression

of Tax1 (Figure 6B, compare lanes 2 and 3, and Figure 6C,

compare lanes 4 and 6). Thus, these results demonstrate that these

three proteins interact with each other and suggest that NRP can

be part of a ternary complex with Tax1 and TAX1BP1.

To study the functionality of this complex, we used several

approaches. First, we performed immunofluorescence imaging to

determine whether NRP or TAX1BP1 alone or in association

could affect the localization of Tax1 to the Golgi apparatus and

the recruitment of the NEMO/IKK complex by Tax1 to this

organelle. Because NRP is localized at the Golgi apparatus, we

first asked whether Tax1 localization to the Golgi-associated

structures was dependent upon NRP expression. NRP-specific

siRNA was used to specifically knockdown NRP expression in

HeLa cells and Tax1-GFP localization was then investigated

(Figure S3A and S3C). Silencing NRP did not impair the

localization of Tax1-GFP to the Golgi apparatus (compare Figure

S3B and S3C, upper panel), where it was still able to colocalize

with NEMO (Figure S3C, lower panel). We then tested the effect

of depleting either TAX1BP1 alone (Figure S3A and S3D) or

together with NRP (Figure S3A and S3E) on the localization of

Tax1 and NEMO to the Golgi apparatus. Preventing the

expression of TAX1BP1 or of both TAX1BP1 and NRP had no

effect on the subcellular distribution of Tax1 and NEMO

(compare Figure S3B, S3D and S3E). Collectively, these results

suggest that NRP and TAX1BP1 are not critical for the

localization of Tax1 and for the recruitment of NEMO/IKK

complex to the Golgi apparatus.

In another approach, we determined whether depleting

TAX1BP1 could affect the regulatory effect of NRP on Tax1

ubiquitination and NF-kB activation (Figure 7). Interestingly,

silencing TAX1BP1 expression precluded the stabilization of Tax1

ubiquitination that was observed when over-expressing NRP

Figure 5. Potentiation of Tax1-dependent NF-kB activation by over-expressed and endogeneous NRP. (A) Jurkat T cells were
transfected with either an Igk-(kB)3-luc construct (left), or an HTLV-1-LTR-luc construct (right), together with Tax1 (1 mg) and VSV-NRP (range 0.25 to
1 mg) as indicated. (B) 293T cells were transfected with either an Igk-(kB)3-luc construct (left), or an HTLV-1-LTR-luc construct (right), together with
Tax1 (100 ng) and an irrelevant siRNA directed against b-globin (2) or NRP-targeted siRNA (+), as indicated. (C) 293T cells were transfected with an
Igk-(kB)3-luc construct together with Tax1 (400 ng) and either wild-type VSV-NRP or VSV-NRP D474N (400 ng) as indicated. (A, B, C) Luciferase
activity was measured and normalized, and is shown as fold induction compared to basal promoter activity. (B, C) Cell lysates were run and probed
for NRP and Tax1.
doi:10.1371/journal.ppat.1000521.g005
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(Figure 7A, compare lanes 2 and 4). In addition, over-expressed

TAX1BP1 up-regulated Tax1-dependent NF-kB activation

(Figure 7B, left panel, lane 2) and this effect was decreased by

silencing NRP (Figure 7B, left panel, lane 4). Furthermore, to

determine whether NRP and TAX1BP1 act synergistically or not,

we examined the effect of double-siRNA knock-down of NRP and

TAX1BP1 on the activation of NF-kB mediated by Tax1. As

expected from the ubiquitination assay (Figure 7A), we observed

that depletion of TAX1BP1 decreased Tax1-mediated NF-kB

activation (Figure 7B, right panel, lane 2). Interestingly, following

the double depletion, the level of NF-kB activation was not further

decreased as compared to the single depletion of TAX1BP1

(Figure 7B, right panel, lane 4). As controls, NRP, TAX1BP1 and

Tax1 expression levels were determined by western blot (Figure 7A

and 7B). Altogether, these results suggest that NRP and TAX1BP1

cooperate in Tax1-mediated NF-kB activation.

Discussion

It is well established that one of the primary actions of Tax1 is to

permanently activate the NF-kB signaling in the cytoplasm, and

several models have been suggested to explain how this occurs. An

important advance came first from experiments showing that

Tax1 directly interacts with NEMO, which then functionally

recruits Tax1 into the large NEMO/IKKa/IKKb complex that

phosphorylates IkB molecules [11–13]. How this interaction is

regulated is not completely understood. To gain insight into this,

we searched for additional Tax-interacting proteins. This led to

the identification of NRP, also named Optineurin, as an

interacting protein for Tax. This interaction is mediated through

the ubiquitin-binding domain of NRP. Interestingly, mutations of

the ubiquitination sites of Tax1 prevented its association with

NRP, strongly suggesting that Tax1 ubiquitination is required for

its interaction with NRP. Ubiquitination of Tax1 provides an

important regulatory mechanism that promotes Tax1-mediated

activation of NF-kB [15–17,23]. Tax1 polyubiquitin chains are

composed predominantly of K63-linked chains and the ubiquiti-

nation of Tax1 is dependent on the E2 ubiquitin-conjugating

enzyme Ubc13 [17,18]. The NF-kB activation process occurs

through the direct binding of the ubiquitinated form of Tax1 to

NEMO [16] in a specific subcellular compartment [18,23,28].

Different studies have suggested that Tax ubiquitination regulates

Figure 6. Synergistic interaction between Tax1, TAX1BP1 and NRP. 293T cells were transfected with Tax1, VSV-NRP and Flag-TAX1BP1 as
indicated. Total lysates were immunoprecipitated with (A) anti-Tax1, (B) anti-Flag or (C) anti-VSV antibodies. Immunoblot analyses of
immunoprecipitates and lysates were performed using antibodies directed against Flag, VSV and Tax1, as indicated.
doi:10.1371/journal.ppat.1000521.g006
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Figure 7. Cooperative modulation of Tax1 ubiquitination and NF-kB activation by NRP and TAX1BP1. (A) 293T cells were transfected
with Tax1-His, HA-Ub, and VSV-NRP and either b-globin- (control) or TAX1BP1-directed siRNA, as indicated. Ubiquitinated forms of Tax1 were retained
on Ni-NTA beads and processed for western blot analysis using anti-HA antibodies. Levels of expression of Tax1, VSV-NRP and TAX1BP1 in total
lysates were verified by western blot using anti-Tax1, anti-VSV and anti-TAX1BP1 antibodies, respectively. (B) 293T cells were transfected with an Igk-
(kB)3-luc construct and Tax1, together with (left panel): Flag-TAX1BP1 and irrelevant b-globin (2) or NRP-targeted (+) siRNA; or (right panel): b-globin,
NRP or TAX1BP1-specific siRNA, or both siRNA, as indicated. Luciferase activity was measured and normalized, and is shown as fold induction
compared to basal activity. Levels of NRP, TAX1BP1 and Tax1 were assessed in cell lysates.
doi:10.1371/journal.ppat.1000521.g007
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IKK relocalization to the Golgi apparatus [23] or to the

centrosome [18]. This relocalization involves the accumulation

of Tax1 in Golgi-associated lipid rafts allowing the recruitment of

the NEMO/IKK complex to these microdomains [28].

The interaction of NEMO with polyubiquitinated substrates is

involved in transporting the NEMO/IKK complex towards its site

of activation. This has been well described for the stimulation of

NF-kB by the TNF-R and TCR [6,29], allowing the recruitment

of NEMO to these receptors and the subsequent phosphorylation

of IKKb by the upstream kinase TAK1. Similarly, DNA damage

causes the translocation of NEMO from the cytoplasm to the

nucleus and its phosphorylation by ATM [30]. Although previous

studies have suggested that Tax1 ubiquitination is correlated with

the localization of the NEMO/IKK complex at the Golgi

apparatus, modulation of this process is still poorly understood.

Our model is that NRP is a positive player in Tax1-induced NF-

kB activation by increasing the polyubiquitination of Tax1. This

model is supported by our results showing that increasing the level

of NRP increases Tax1 polyubiquitination (Figure 4) and that the

level of NRP expression correlates with Tax1-induced NF-kB

activation (Figure 5). Whether NEMO also exerts a similar effect

on Tax1 ubiquitination still remains unknown. Of note, a different

effect of NRP was obtained with TNF-a-induced NF-kB

activation, where NRP was shown to compete with NEMO for

the binding to polyubiquitinated RIP and consequently to inhibit

NF-kB activation [25]. The situation with Tax1 is unusual since

the polyubiquitinated substrate that binds to NEMO and NRP is

Tax1 itself, an NF-kB activator.

Concerning the regulation of Tax1 ubiquitination by NRP, the

simplest interpretation of our experiments is that NRP either

interacts directly or indirectly with an ubiquitin ligase, or that it

prevents the interaction of Tax1 with a deubiquitinase. The E3

ubiquitin ligase(s) responsible for K63-linked polyubiquitination

and the deubiquitinase responsible for the cleavage of these

ubiquitin chains on Tax1 remain to be identified.

TAX1BP1 is a cellular protein that binds to Tax1 and acts as

an ubiquitin-dependent negative regulator of NF-kB signaling in

response to TNF-a stimulation [27]. It has recently been shown

that this negative regulation is mediated by a quaternary

complex containing TAX1BP1, A20, Itch and RNF11 [31–34].

Our results indicate that TAX1BP1 interacts with NRP and

Tax1 individually and also with both proteins together to form

a ternary complex, raising the possibility that TAX1BP1

participates in NRP-mediated enhancement of Tax1 ubiquitina-

tion. We have observed that the stabilization of Tax1

ubiquitination by NRP was completely impaired in the absence

of TAX1BP1 (Figure 7A) and that NRP and TAX1BP1

cooperated to positively regulate Tax1-induced NF-kB activa-

tion (Figure 7B). Thus, we can propose that the negative

regulation of TNF-a-induced NF-kB activation is mediated by a

quaternary A20/TAX1BP1/Itch/RNF11 complex, as opposed

to the positive regulation of Tax1-induced NF-kB activation,

which is mediated by a ternary complex containing Tax1,

TAX1BP1 and NRP.

Since it has been shown that Tax1 inactivates A20 by disrupting

the TAX1BP1/Itch/A20 complex, thus counteracting its negative

function [33], we speculate that NRP also is involved in this

process. Furthermore, since RNF11 has been shown to interact

with NRP [35], it will be important to determine whether this

protein is also present in the TAX1BP1/Tax1/NRP complex and

whether it regulates Tax1 ubiquitination. Future studies are

needed to specifically address the mechanism whereby the Tax1/

NRP/TAX1BP1 complex positively regulates Tax1 ubiquitination

and subsequent NF-kB activation.

Materials and Methods

Cell culture
HeLa and 293T cell lines were grown in DMEM medium.

HTLV-1-infected C8166 and C91PL and uninfected CEM and

Jurkat cell lines were grown in RPMI 1640 medium. In all cases,

the medium was supplemented with fetal bovine serum (10%) and

antibiotics (100 units/ml penicillin and 100 mg/ml streptomycin),

and cells were maintained at 37uC in 5% CO2.

Constructs and siRNA
pSG5M-Tax1, pSG5M-Tax2, Tax1-6His, Tax1-GFP plasmids

were previously described [18,36]. Tax mutants harboring

substitutions of all (K1–10R) or some (K7–8R) lysines into

arginines were described elsewhere and were kindly provided by

C. Pique [26]. HA- and VSV-tagged NRP plasmids were obtained

by cloning NRP ORF (aa 1–577) into pT7link-HA or pcDNA3/

pT7-link-GVSV vectors at EcoRI sites. To identify the domains of

NRP required for in vivo interaction with Tax1, modified forms of

NRP (VSV-NRP-DC (aa 1–278) and VSV-NRP-DN (aa 300–577))

(Figure 3A) were generated by site-directed mutagenesis with a

PCR-based strategy and inserted at EcoRI sites into pcDNA3/

pT7-link-GVSV vector. VSV-NRP D474N plasmid was generated

by site-directed mutagenesis. HA-tagged wild-type and lysine-less

(K0, in which all lysine residues are mutated into arginine)

ubiquitin constructs were obtained from P. Jalinot [37]. Flag-

tagged TAX1BP1 plasmid was a kind gift from E. Harhaj [33].

NRP double-stranded siRNA (GGAGACUGUUGGAAGC-

GAAGU) and b-globin double-stranded siRNA (control, GGU-

GAAUGUGGAAGAAGUU) were purchased from Proligo (Sig-

ma). SMART pool siRNA directed against TAX1BP1 was

purchased from Dharmacon.

Antibodies
The following antibodies were used: anti-Tax1 (Tab172), anti-

Tax2 (GP3738) [36], anti-NRP (100 000, Cayman Chemical),

anti-HA (MMS-101R, Covance), anti-VSV (V 5507, Sigma-

Aldrich, or ascite fluid of clone P5D4), anti-GM130 (610823, BD

Transduction Laboratories), anti-NEMO (611306, BD Transduc-

tion Laboratories), anti-Flag M2 (F-3165, Sigma-Aldrich), anti-

TAX1BP1 (sc-81390, Santa Cruz Biotechnology), anti-His (sc-804,

Santa Cruz Biotechnology).

Yeast two-hybrid screen
Yeast culture mediums were prepared and screens were

performed as previously described [38]. Tax1 and Tax2 coding

sequences were cloned by in vitro recombination using the

GatewayH technology (Invitrogen) into Gal4-BD yeast two-hybrid

vector pDEST32 (Invitrogen), and transformed into AH109 yeast

strain (Clontech) using a standard Lithium/Acetate procedure.

GAL4-BD-Tax1 and -Tax2 fusion proteins did not induce

autonomous transactivation of HIS3 reporter gene, and screens

were performed on synthetic medium lacking histidine (2His

medium) and supplemented with 10 mM of 3-amino-1,2,4-triazole

(3-AT, Sigma-Aldrich). A mating strategy was used for screening

the human spleen cDNA library cloned in the GAL4-AD pPC86

vector (Invitrogen) and previously transformed into Y187 yeast

strain (Clontech). After 6 days of culture on selective medium,

[His+] colonies were selected and purified over 3 weeks by culture

on selective medium to eliminate false-positives. AD-cDNAs were

amplified by PCR from zymolase-treated yeast colonies using

primers that hybridize within the pPC86 regions flanking cDNA

inserts. PCR products were sequenced and cellular interactors

were identified by BLAST analysis.
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Transient transfections
293T cells were transfected using either the Polyfect reagent

(Qiagen) or Lipofectamine 2000 (Invitrogen). For luciferase assays,

293T were first transfected with siRNA using Icafectin 442

(Eurogentec), followed 48 h later by DNA and siRNA transfection

using Lipofectamine 2000. Jurkat cells were transfected using the

Superfect reagent (Qiagen), except in Figure S2 where they were

nuleofected using the Amaxa Nucleofector Technology (Amaxa

Biosystems). HeLa cells were transfected using the Effectene

reagent (Qiagen).

Immunoprecipitations and immunoblots
293T, CEM, C8166 and C91PL cell lines cells were lysed in

Chris buffer (50 mM Tris, pH 8.0, 0.5% Nonidet P-40, 200 mM

NaCl, and 0.1 mM EDTA) supplemented with a cocktail of

protease inhibitors (Complete, Roche), and the phosphatase

inhibitors sodium fluoride (100 mM) and sodium orthovanadate

(2 mM). Proteins were then recovered by immunoprecipitation

from an equivalent amount of proteins, using one of the following

antibodies: anti-Tax, anti-VSV, anti-NRP, anti-Flag. Immune

complexes were recovered with magnetic Staphylococcus aureus

Protein A or Protein G beads (Bio-Adembeads, Ademtech).

Immunoprecipitates were then washed with lysis buffer, eluted

and resolved by sodium dodecyl sulfate-polyacrylamide gel

electrophoresis.

Subsequent immunoblots were performed according to a

previously described protocol [36] and proteins transferred to

nitrocellulose (I-Blot, Invitrogen) or Immobilon membranes

(Millipore) were revealed with ECL Westen Blotting Substrate

(Pierce) or ECL Plus Western Blotting Detection Reagent

(Amersham).

Glycerol gradient fractionation and gel filtration analysis
HeLa cells were lysed in a lysis buffer (50 mM Tris-HCl pH 7.4,

120 mM NaCl, 5 mM EDTA, 0.5% Nonidet-P40, 0.2 mM

Na3VO4, 1 mM DTT, 1 mM PMSF) in the presence of protease

inhibitors (Complete, Boehringer) by 15 passages through a 24-

gauge needle.

Whole cell extracts were fractionated by centrifugation at

39000 rpm for 24 hrs on a 10–40% glycerol gradient (12 ml),

using an Sw 41 rotor (Beckmann). The glycerol-containing buffers

were prepared with the same composition as the lysis buffer.

Twenty-four fractions (0.5 ml each) were then collected and 20 ml

of each fraction were processed for immunoblot analysis.

For the gel filtration analysis, whole cell extracts were subjected

to another centrifugation at 15000 rpm for 15 min, and then

purified using Quick Spin Sephadex G25 columns (Roche). Gel

filtration chromatography was carried out on a Superpose 6

column (Pharmacia) in a FPLC running buffer (50 mM Tris-HCl

pH 7.4, 120 mM NaCl, 5 mM EDTA, 0.1% Nonidet-P40,

0.2 mM Na3VO4, 1 mM DTT, 1 mM PMSF, 10% glycerol) in

the presence of protease inhibitors (Complete, Boehringer). The

columns were precalibrated with albumin (67 kDa), aldolase

(158 kDa), catalase (232 kDa), ferritin (440 kDa), thyroglobulin

(669 kDa) and blue dextran (2000 kDa). Several glycerol gradients

were loaded and analyzed with the same proteins, with the

addition of the ovalbumin (43 kDa). Forty fractions of 0.5 ml each

were then collected and 20 ml of fractions 16 to 40 were processed

for immunoblot analysis.

Nickel pull-down
Forty-eight hours after transfection, cells were harvested in cold

PBS and lysed under highly denaturating and reductive conditions

in Guanidium Buffer (10 mM Tris HCl pH 8.0, 100 mM

Na2HPO4/NaH2PO4, 6 M Guanidium) [26]. Cell lysates were

then incubated with Ni-NTA beads (His-select HF Agarose Beads,

Sigma-Aldrich) at room temperature. Beads were then extensively

washed with Guanidium Buffer, Urea Buffer (10 mM Tris HCl

pH 6.4, 100 mM Na2HPO4/NaH2PO4, 8 M Urea) and cold PBS.

Bound proteins were finally eluted and processed for immunoblot

analysis.

Indirect immunofluorescence
Twenty-four hours post-transfection, cells were fixed with 4%

paraformaldehyde, rinsed and permeabilized in PBS containing

0.5% Triton X-100. Following pre-incubation with PBS contain-

ing 5% BSA, cells were incubated with primary antibodies in PBS

containing 1% BSA for 1 h at room temperature. Samples were

then stained with Alexa Fluor 568-conjugated goat anti-rabbit IgG

(A-11010, Invitrogen), Cy5-conjugated donkey anti-mouse IgG

(715-175-150, Jackson ImmunoResearch Laboratories), or

AMCA-conjugated horse anti-mouse IgG (CI-2000, Vector

Laboratories) for 1 h at room temperature. Where indicated, an

additional staining of nuclei was performed with DAPI (Sigma) for

5 min. The coverslips were washed, mounted with Vectashield

Mounting Medium (H-1000, Vector Laboratories), and examined

under a Zeiss Axioplan 2 microscope, using the Zeiss ApoTome

system and the Zeiss Axiovision 4.4 software.

Luciferase assays
Jurkat and 293T cells were transiently transfected with either an

HTLV-1-LTR-luc or an Igk-(kB)3-luc plasmid together with the

indicated plasmids or siRNA. The amount of total DNA was

equalized using a pSG5M backbone vector, as previously reported

[36]. All transfections were carried out in the presence of a renilla

luciferase vector (phRG-TK) in order to normalize the results for

transfection efficiency. Luciferase activity was assayed 18 h post-

transfection using the Dual-Luciferase Reporter Assay System

(Promega) on a Berthold LB9500C luminometer as reported

previously [39].

Supporting Information

Figure S1 Glycerol gradient analysis of Tax1 and NRP. HeLa

cells were transfected with Tax1 and HA-NRP, and cell extracts

were separated through a glycerol gradient. All fractions as well as

cell extracts (input) were analyzed by western blotting using

antibodies directed against HA (upper panel) or Tax1 (lower

panel). Precalibration of the glycerol gradient is indicated beneath

the fractions count (kDa).

Found at: doi:10.1371/journal.ppat.1000521.s001 (5.09 MB TIF)

Figure S2 Colocalization of Tax1, NRP and NEMO in Golgi-

associated structures. Jurkat cells were transfected with (A and B)

Tax1-GFP or (C) GFP alone and stained with an anti-NRP

antibody (red) and either (A and C) an anti-GM130 or (B) an anti-

NEMO antibody (blue). Cells were observed as described in the

Materials and Methods section. Differential interference contrast

(DIC) is shown. Scale bar = 10 mm.

Found at: doi:10.1371/journal.ppat.1000521.s002 (5.89 MB TIF)

Figure S3 Effect of NRP or TAX1BP1 silencing on Tax1

localization and colocalization with NEMO. HeLa cells were

transfected with Tax1-GFP and with siRNA directed against

either (A and B) b-globin (control, -), (A and C) NRP, (A and D)

TAX1BP1, or (A and E) both NRP and TAX1BP1. (A) Lysates

were analyzed by western blot to control NRP and/or TAX1BP1

depletion. (B to E) Cells were stained with either an anti-GM130
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or an anti-NEMO antibody as indicated (red). Nuclei were stained

using DAPI (blue). Cells were observed as described in the

Materials and Methods section. Scale bar = 10 mm.

Found at: doi:10.1371/journal.ppat.1000521.s003 (9.35 MB TIF)
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