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Abstract

Background: In mammals, new neurons are added to the olfactory bulb (OB) throughout life. Most of these new neurons,
granule and periglomerular cells originate from the subventricular zone (SVZ) lining the lateral ventricles and migrate via the
rostral migratory stream toward the OB. Thousands of new neurons appear each day, but the function of this ongoing
neurogenesis remains unclear.

Methodology/Principal Findings: In this study, we irradiated adult mice to impair constitutive OB neurogenesis, and
explored the functional impacts of this irradiation on the sense of smell. We found that focal irradiation of the SVZ greatly
decreased the rate of production of new OB neurons, leaving other brain areas intact. This effect persisted for up to seven
months after exposure to 15 Gray. Despite this robust impairment, the thresholds for detecting pure odorant molecules and
short-term olfactory memory were not affected by irradiation. Similarly, the ability to distinguish between odorant
molecules and the odorant-guided social behavior of irradiated mice were not affected by the decrease in the number of
new neurons. Only long-term olfactory memory was found to be sensitive to SVZ irradiation.

Conclusion/Significance: These findings suggest that the continuous production of adult-generated neurons is involved in
consolidating or restituting long-lasting olfactory traces.
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Introduction
Neurocognitive deficits and olfactory changes are frequently

observed after chemotherapy and cranial radiotherapy in adult

patients [1,2]. These changes may result from damage to the

neural stem cell (NSC) populations of the subgranular zone of the

dentate gyrus (DG), the hippocampus and the subventricular zone

(SVZ) lining the forebrain lateral ventricles [3,4]. NSCs contin-

ually generate new neurons, which are recruited to the DG and

the olfactory bulb (OB) of adult mammals [5]. New neuronal

progenitors generated in the SVZ migrate along the rostral

migratory stream (RMS) towards the OB. Within the OB, they

integrate into the granule cell layer (GCL), the external plexiform

layer (EPL) or the glomerular layer (GL), giving rise to both

gamma-aminobutyric acid (GABA)- and dopamine-containing

interneurons [6–10]. This ongoing neurogenesis is essential for

maintenance of the integrity of the OB circuitry. The blocking of

this process depletes the population of OB interneurons [11].

Activity-dependent factors regulate OB neurogenesis, suggesting

that adult neurogenesis is not exclusively constitutive [12–15]. The

new cells added to the OB and DG circuits undergo functional

integration [16,17], and this process is thought to be important for

learning and memory [5]. Spatial memory deficits have been

observed following the disruption of neurogenesis in transgenic

mice [11,18,19]. However, the functional relevance of adult

neurogenesis in olfaction remains unclear. Some studies have

suggested that new neurons are not required for olfaction, whereas

others have implicated adult-generated neurons in a number of

olfactory functions. For example, olfaction has been shown to be

unaffected in Bax-knockout mice [20] and in mice producing a

neuron-specific enolase-diphtheria toxin [11], despite the signifi-

cantly lower than normal level of neurogenesis in both transgenic

models. By contrast, both mice lacking neural cell-adhesion

molecule (NCAM) and mice with the brain-derived neurotrophic

factor (BDNF) Val66Met knock-in display impaired OB neuro-

genesis and odor discrimination [21,22]. Olfactory discrimination

is also impaired in aging rodents, mice heterozygous for leukemia

inhibitory factor receptor (Lifr +/2), and waved-1 mutant mice (a

hypermorph of TGF-alpha), in which OB neurogenesis level is
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reduced [23]. Finally, a correlation has been found between the

degree of OB neurogenesis and olfactory memory [24,25],

providing further support for the hypothesis that adult neurogen-

esis plays an important role in olfaction.

These inconsistencies may result from the use of different ablation

techniques, affecting both the DG and OB regions. Precise

techniques for disrupting adult neurogenesis in specific areas of

the brain may make it possible to assign behavioral functions to each

neurogenic system. Focal irradiation of the SVZ leads to a dose-

dependent loss of cell types in this region and repopulation may take

several months [26]. Here, we used focal SVZ irradiation in adult

mice to disrupt the production of new OB neurons without affecting

the rest of the brain or the body. We examined the functional effects

of irradiation on odorant detection, discrimination and olfactory

memory. We found that the continuous recruitment of adult-

generated OB neurons was not required for any of the olfactory

functions tested except for long-term olfactory memory, which was

less robust after irradiation.

Results

Focal irradiation of the adult SVZ strongly reduced OB
neurogenesis

We evaluated the effects of SVZ irradiation (Figures 1A and 1B)

on the production of new neurons, by quantifying doublecortin

(DCX) staining in the SVZ and OB. DCX is a microtubule-

associated protein produced by neuronal progenitors and

immature neurons. It can therefore be used as a reliable marker

for the quantification of adult neurogenesis [27,28].

Several months after SVZ irradiation, neurogenesis levels were

significantly lower than normal in both the SVZ (Figure 1C and

1D) and OB (Figure 2A and 2B). A complete statistical analysis is

provided in the Supplementary Table S1. This finding is consistent

with a previous study showing that SVZ progenitor cells are

sensitive to irradiation [26]. Levels of DCX immunoreactivity

were significantly lower in the SVZ of irradiated mice (about 30%

those of sham-treated mice, Figure 1D; DCX optical density for

sham treatment: 0.09660.009, for SVZ-irradiation treatment:

0.0360.003, p,0.0001). Similarly, DCX immunoreactivity

throughout the entire OB was 70% weaker in irradiated mice

than in sham-treated mice (1.17760.134 in sham-treated mice;

0.32760.022 in SVZ-irradiated mice, p,0.0001; see Figure 2A

and 2B).

All the cell layers in the OB were similarly affected (Figure 2C).

Irradiation decreased DCX immunoreactivity in the RMS layer at

the core of the OB (RMSob) by 75% (sham-treated: 0.72260.065

and SVZ-irradiated: 0.18560.015, p,0.0001). Similarly, DCX

immunoreactivity in the GCL and GL was 70% lower after

irradiation (GCL: 0.22460.031 in sham-treated, 0.07260.006 in

SVZ-irradiated, p,0.0001; GL: 0.09660.017 in sham-treated,

Figure 1. Focal irradiation decreased DCX immunoreactivity in the SVZ. (A, B) Focal gamma-ray irradiation of the SVZ. Adult mice were
anesthetized and placed in a stereotaxic frame for cranial irradiation. A lead shield protected their body during exposure of the SVZ to gamma rays. A
total dose of 15 Gray was delivered in three equal fractions administered at two-day intervals. H, hippocampus. (C) DCX staining of neuroblasts in a
coronal section of the SVZ from a sham-treated mouse (left) and from an irradiated mouse 7 months after SVZ irradiation (right). Note the weaker
DCX staining in the SVZ of the irradiated (IRR) mouse. LV, Lateral ventricle. (Scale bar: 100 mm.). (D) Densitometric analysis of DCX immunoreactivity in
the SVZ of sham-treated and irradiated mice 7 months after irradiation. OD, optical density. Student’s t test; *** p,0.0001 (n = 6 ).
doi:10.1371/journal.pone.0007017.g001
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0.03160.002 in SVZ-irradiated, p,0.01). This pattern was

observed along the entire length of the rostrocaudal axis of the

OB (Figure 2D). We then used DCX immunoreactivity to assess

the number of dendrites and the dendritic morphology of the

newly generated cells reaching the OB. These features were not

affected by irradiation (Figure 2E, see also Supplementary Figure

S1).

We confirmed the lower level of cell proliferation in the

irradiated SVZ, by quantifying bromodeoxyuridine (BrdU)

staining (Figure 3A and 3B) at two time points after the final

irradiation session (Figure 3C). Animals were injected with BrdU

three days after the final irradiation session. They were then killed

11 days after BrdU injection (14 days after irradiation). Far fewer

BrdU+ cells were found in the OB of irradiated mice(60% fewer)

than in that of sham-treated mice (4,3876969 BrdU+ cells in

sham-treated mice, 1,7926859 after irradiation; p,0.005). A

similar pattern was seen in all layers (for GCL: 3,2416432 and

1,4056697, p,0.005; for EPL: 193614 and 115619, p,0.01;

and for GL: 490695 and 2736120, p,0.05, for sham-treated and

SVZ-irradiated mice, respectively; Figure 3D).

We then injected mice with BrdU 115 days after the final

irradiation session and killed them for analysis 11 days after BrdU

Figure 2. Irradiation decreased the number of DCX+ cells in the OB. (A) Representative images showing DCX+ cells in coronal sections of the
OB, 7 months after SVZ irradiation. The GL, EPL, GCL and RMSob are indicated. (Scale bar: 100 mm). (B and C) Densitometric analysis of DCX
immunoreactivity in total OB (B), including the RMSob (C, left), GCL (C, middle) and GL, (C, right) of sham-treated and irradiated mice 7 months after
irradiation. OD, optical density. Student’s t test; *** p,0.0001. ** p,0.01 (n = 12). (D) Densitometric analysis of DCX staining along the rostrocaudal
axis of the OB, in sham-treated mice and irradiated mice 7 months after irradiation (n = 12). All cell layers along the entire rostrocaudal axis of the OB
were equally affected by SVZ irradiation. (E) Immature neurons visualized by DCX staining in the GCL and GL of sham-treated and irradiated mice, 7
months after irradiation. (Scale bar: 20 mm.).
doi:10.1371/journal.pone.0007017.g002
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injection (Figure 3C). The number of BrdU+ cells was decreased to

a similar extent in irradiated mice (60% fewer positive cells in

irradiated mice; 1,6846276 vs. 7246124, p,0.05; Figure 3C). As

a control, we analyzed the number of BrdU+ cells in the

hippocampus of SVZ-irradiated mice. The number of positive

cells in this part of the brain was similar in irradiated and sham-

treated animals (Supplementary Figure S2), demonstrating the

confinement of exposure to gamma radiation to the targeted area.

Finally, we analyzed the survival rate of newly generated

neurons in the OB, by counting BrdU+ cells 31 days after BrdU

injection. Consistent with previous studies (e.g., [29]), the number

of BrdU+ cells halved between day 11 (D11) and D31 in the

control OB (p,0.005). Similar decreases were observed in the

GCL, EPL and GL (Figure 3D). Surprisingly, in sharp contrast to

what was observed for the controls, the number of BrdU+ cells did

not decrease significantly between D11 and D31 (p.0.05) in

irradiated animals. Thus, local irradiation of the SVZ significantly

impaired the recruitment of newly generated OB neurons, and the

neurons that actually reached the OB escaped cell apoptosis.

Spontaneous odorant discrimination was not affected by
SVZ irradiation

Given the strong effects of irradiation on neuron production, we

investigated possible effects on olfaction. As irradiation has

transient side effects on the functioning of the mature nervous

system due to local inflammation [30], we carried out all

behavioral experiments at least two months after irradiation,

when inflammation markers had disappeared (data not shown). As

a further control, we checked that there was no change in

locomotor activity or anxiety levels in irradiated animals (data not

shown). Using both non-operant and operant conditioning

paradigms, we investigated odorant detection, discrimination

and olfactory memory. We first subjected mice to a spontaneous

discrimination task involving cross-habituation, to measure their

ability to distinguish between different odorants in the absence of

associative learning or previous odor reinforcement (Figure 4).

Mice were initially trained through six successive exposures to

linalool (Figure 4A). Both groups showed a progressive decrease in

investigating the same odorant in repeated exposures, a process

called habituation. Two-way ANOVA revealed a significant effect

of repeated exposure (p,0.0001), but no effect of treatment

(irradiation) or exposure x treatment interaction (p.0.05) was

found. Mice were then subjected to a habituation/dishabituation

session in which they were exposed to three different odorants

every day over a six-day period (Figure 4B–4G). After the fourth

sequential exposure to the odorant to which they had been

habituated, a similar, but different, odorant was introduced. Mice

were exposed to the odorant to which they had been habituated

twice more before the introduction of a third odorant from an

odorant family different from that to which the first two odorants

belonged. We found no difference in the time spent investigating

each odorant, for any of the sessions, between sham-treated and

irradiated mice (p.0.05). Moreover, the extent of dishabituation

was similar for the two groups (p.0.05): all mice detected even

small differences between similar odorants (Figure 4B). Converse-

ly, neither irradiated nor sham-treated mice were able to

distinguish spontaneously between the limonene and terpinene

enantiomers (Figures 4C and 4D, respectively). A complete

statistical analysis is provided in Supplementary Table S2. Thus,

spontaneous olfactory discrimination was not affected by SVZ

irradiation.

Short-term olfactory memory was studied by exposing mice

twice to mint odorant (habituation) and then exposing them to this

same odorant again after a 30-minute interval (Figure 4H). Both

groups spent less time investigating the odorant during the second

and third exposure periods (effect of exposure: p,0.0001;

irradiation: p.0.05, and interaction: p.0.05), demonstrating that

short-term memory was similar in irradiated mice (tested over a

period of 30 minutes) and in controls. Thus, decreasing the

number of newly generated neurons reaching the OB has no effect

on olfactory discrimination or short-term memory.

The recognition of social olfactory cues did not require
adult OB neurogenesis

All the odorants used for the behavioral tests were artificial. We

therefore checked that we had not missed a potential consequence

of reducing OB neurogenesis due to our use of synthetic odorants

(i.e., ethologically non-relevant molecules). We used a social

Figure 3. Irradiation reduced the recruitment of new neurons. (A, B) New cells were labeled with BrdU 3 days after the last focal irradiation
and survival was determined 11 days later. Photomicrographs show OB coronal sections labeled with BrdU, for sham-treated and irradiated mice.
(Scale bar: 30 mm). (C) New cells were labeled with BrdU 8 or 120 days after the first session of irradiation. The mean number of BrdU+ cells in the
entire OB was determined for sham-treated and irradiated mice 11 days after the final BrdU injection. Student’s t test; ** p,0.01. * p,0.05 (n = 3–6
mice). (D) BrdU+ cell number in the OB, including the GCL, EPL and GL, for sham-treated and irradiated mice, with BrdU injected 8 days after the first
session of irradiation. Student’s t test; ** p,0.01. * p,0.05 (n = 4–6).
doi:10.1371/journal.pone.0007017.g003

Effects of SVZ Irradiation
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Figure 4. Spontaneous discrimination was not affected by irradiation. Sham-treated and irradiated mice were tested daily, in successive
sessions of habituation/dishabituation and memory tests. Histograms indicate the mean time spent investigating an odorant during 90 seconds of
exposure, with a two-minute period of rest between consecutive exposures. (A) Habituation with 6 successive exposures to linalool. Both groups
showed progressively less interest in investigating the same odorant in repeated exposures, a process called habituation. (B–G) Sessions of habituation
(4 successive exposures to the odorants indicated) followed by dishabituation (a single period of exposure to an odorant similar to that used for
habituation), recall of habituation (two successive exposures to the odorant used for habituation) and a final dishabituation with a single exposure to a
dissimilar odorant. The time spent investigating the test odorant is shown. The extent of dishabituation was similar for the 2 groups: all mice detected
even small differences between similar odorants (3B). Neither irradiated nor sham-treated mice could distinguish spontaneously between the limonene
and terpinene enantiomers (3C and D). No significant effects of irradiation were observed (Two-way ANOVA; p.0.05, n = 9–10 mice). (H) 30-minute
olfactory memory was not affected by irradiation. A mint odorant was introduced into the cage for five minutes. Two minutes later, the same odorant
was introduced again for five minutes. The odorant was introduced into the cage for a final two-minute period after a 30-minute rest period (memory
test). Histograms indicate the mean time of investigation. No effect of irradiation was observed (two-way ANOVA; p.0.05 n = 9–10 mice).
doi:10.1371/journal.pone.0007017.g004

Effects of SVZ Irradiation
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interaction test to quantify the spontaneous investigation of an

unfamiliar mouse by a resident mouse. We found that the two

groups of mice spent similar amounts of time investigating the

intruder (23.262.0 s and 23.563.4 s for sham-treated and

irradiated mice, respectively; p.0.05; see also Supplementary

Table S2). Thus, the disruption of adult neurogenesis did not

impair the processing of social olfactory information.

Odorant detection did not depend on adult OB
neurogenesis

We hypothesized that the absence of an obvious phenotype in

irradiated animals might be due to the use of high concentrations

of odorants. We therefore used an automated operant condition-

ing procedure (a go/no-go test) to investigate olfactory sensitivity,

by determining the detection threshold for (+)-carvone, using the

descending limits method. (+)-carvone was the rewarded (S+)

stimulus, and the solvent, mineral oil, was the unrewarded (S-)

stimulus. Water-deprived mice were first trained to distinguish

between a high concentration (1023) of (+)- carvone and mineral

oil. They were then subjected to daily blocks of trials involving

exposure to progressively lower concentrations (1024, 1025 and

1026). Performance accuracy decreased with decreasing concen-

tration for both groups (Figure 5A; p,0.05). An analysis of

odorant concentration-performance curves for the last block of

exposures revealed that both irradiated and sham-treated mice

performed the test with an accuracy of more than 80% for

concentrations of 1023 and 1024 (+)-carvone (see Supplementary

Table S3 for a complete statistical analysis). Furthermore, the rate

of successful task completion was similar for the two groups (effect

of treatment: p.0.05; block of trials: p,0.001; interaction:

p.0.05). By contrast, the accuracy with which both irradiated

and sham-treated mice performed the task fell to levels consistent

with chance alone (50% correct detection) at 1025 and 1026 (+)-

carvone (treatment: p.0.05; block of trials: p.0.05; interaction,

p.0.05). The (+)-carvone detection threshold was similar in

irradiated and control mice (treatment: p.0.05; interaction:

p.0.05). We therefore conclude that SVZ irradiation does not

impair odorant detection.

Irradiated mice successfully completed two-odorant
discrimination tasks

We used the same procedure to explore further the ability of

mice to distinguish between different pairs of odorants (Figure 5B).

Both groups acquired the ability to distinguish between pairs of

odorants in our separate two-odorant discrimination tasks (a

complete statistical analysis is provided in Supplementary Table

S3). The acquisition rate was similar in the two groups (pair A–D:

effect of treatment: p.0.05; block of trials: p,0.001; interaction:

p.0.05). Mice from both groups reliably distinguished between all

eight odors introduced in a random order within the same session

(treatment: p.0.05; block of trials: p,0.001; interaction: p.0.05).

Thus, SVZ irradiation does not affect acquisition of the ability to

complete two- to eight-odorant discrimination tasks successfully.

Irradiated mice performed odorant-mixture tasks
accurately

Mice were then exposed to more complex problems, using a

discrimination task based on binary odorant mixtures. The

introduction of mixtures of various proportions of (+)-carvone

and (2)-carvone increased the complexity of the task. Five

alternating mixtures with different ratios were used and animals

were rewarded only when a go-response was observed in the

presence of mixtures in which (+)-carvone was the dominant

Figure 5. Irradiation has no effect on performance in rein-
forced discrimination tasks. (A) Odor detection thresholds were not
altered by irradiation. Accuracy (% of correct responses) is shown for
the detection of successively lower concentrations of (+)-carvone (10
blocks of 20 trials). (+)-carvone was the rewarded (S+) stimulus and the
solvent, mineral oil (MO), was the non-rewarded (S-) stimulus. Water-
deprived mice were first trained to distinguish between a high
concentration of (+)-carvone and MO. They were then subjected to
daily blocks of trials in which they were exposed to progressively lower
concentrations. Acquisition rate was similar for the 2 groups. A score of
50% corresponds to the success rate expected on the basis of chance
alone (dashed line, A–C). No significant differences were observed for
irradiated mice (p.0.05, n = 7). (B) The acquisition of discrimination
ability in separate 2-odorant discrimination tasks and performance in
the corresponding 8-odorant task were not affected by irradiation. The
accuracy of performance in the discrimination tasks is shown as a % of
correct responses for 8 blocks of 20 trials for odorant pair A (1% anisole,
S+ vs 1% cineole, S-), odorant pair B (0.1% n-amyl acetate, S+ vs 1%
linalool, S-), odorant pair C (1% butanoic acid, S+ vs 1% beta-ionone, S-),
odorant pair D (1% (+)-limonene, S+ vs 1% (+)-carvone, S-) and 4 blocks
of 40 trials for 8-odorant tasks. In the two-odorant tests, the stimuli, A,
B, C and D (giving eight possible permutations) were introduced in a
random order. No effect of SVZ irradiation was observed (two-way
ANOVA; p.0.05, n = 9–10). (C) The ability to distinguish between pairs
of mixtures of two odors was not affected by irradiation. Mixtures
contained 1% (+)-carvone (indicated by (+)-C or S+) and 1% (2)-carvone
(indicated by (2)-C or S-). Five alternating mixtures with different ratios
were used and animals were rewarded only when a go-response was
observed in the presence of mixtures in which (+)-carvone was the
dominant compound. Concentrations (%) of odors are given for the
following pairs of mixtures: 8/2 vs 2/8: 0.8% (+)-C+0.2% (2)-C (S+) vs
0.2% (+)-C+0.8% (2)-C (S-); 7/3 vs 3/7: 0.7% (+)-C+0.3% (2)-C (S+) vs
0.3% (+)-C+0.7% (2)-C (S-); 6/4 vs 4/6: 0.6% (+)-C+0.4% (2)-C (S+) vs
0.4% (+)-C+0.6% (2)-C (S-); 5.2/4.8 vs 4.8/5.2: 0.52% (+)-C+0.48% (2)-C
(S+) vs 0.48% (+)-C+0.52% (2)-C (S-). Performance accuracy is shown as
a % of correct responses for 10 blocks of 20 trials. No effect of SVZ
irradiation was observed (two-way ANOVA; p.0.05, n = 7).
doi:10.1371/journal.pone.0007017.g005

Effects of SVZ Irradiation

PLoS ONE | www.plosone.org 6 September 2009 | Volume 4 | Issue 9 | e7017



compound (see Supplementary Table S3 for statistical analysis).

Performance accuracy varied significantly with the ratio of the

mixture (Figure 5C; p,0.001). Mice from both groups successfully

learned to distinguish between pure odorants (+)-carvone and (2)-

carvone and between the following pairs of mixtures: 80%–20% vs.

20%–80% and 70%–30% vs. 30%–70%. However, performance

accuracy was substantially lower (close to the levels expected on

the basis of chance alone), in both groups, for distinguishing

between 60%–40% and 40%–60% or 52%–48% and 48%–52%

mixtures. Thus, the ability to distinguish between mixtures of

odorants was similar in the two groups of mice, even for difficult

tasks (for pairs of (+)/(2)-carvone mixtures, 8/2 vs. 2/8, 7/3 vs. 3/7,

and 6/4 vs. 4/6: effect of treatment, p.0.05; block of trials,

p,0.001; treatment x block interaction, p.0.05; for 5.2/4.8-4.8/

5.2 mixtures: treatment and block, p.0.05; treatment x block

interaction, p.0.05). SVZ irradiation therefore does not impair

the ability to complete difficult olfactory discrimination tasks

successfully.

Long-term olfactory memory was sensitive to SVZ
irradiation

Finally, we examined the ability of irradiated mice to remember

two odorants learned 30 days before. Both groups were first

trained to distinguish between two new odorants: anisole (S+) and

cineole (S-). The mice were then subjected to the same

discrimination task 30 days later. In this second session, no reward

was given for correct responses. The lack of reinforcement

following the introduction of the S+ stimulus excluded the

possibility of an accurate performance by the animals simply

reflecting a rapid transfer of training between tasks. We measured

the percentage of correct responses for both groups during the last

block of the acquisition period and during the first block of the

memory task performed 30 days later (Figure 6A–C). For each

group, we also calculated the mean number of errors made during

the session (Figure 6D). These experiments confirmed that both

sham-treated and irradiated mice were able to acquire odor-

associated memory in an operant two-odorant task. However, a

significant difference in performance was observed between

sessions (p,0.01), together with a significant interaction between

treatment and session (p,0.05; a complete statistical analysis of the

data is provided in the supplementary Table S4). Performance

accuracy was significantly lower in the second session for

irradiated mice (p,0.05) but not for sham-treated animals

(p.0.05). Thus, memory of learned odorants was better retained

over a one-month period in sham-treated than in irradiated mice.

Irradiated animals made significantly more errors in the memory

task than sham-treated animals (Figure 6D, p,0.05). All errors

made during this session were associated with responses triggered

by S-, suggesting that the mistakes made by irradiated mice were

due to an impaired memory of odors, but not of the go/no-go task

procedure. This effect on olfactory memory was replicated with

four different odorant pairs (data not shown). Thus, although the

ability to detect and discriminate between odorants was not

affected by irradiation, irradiated animals remembered odorants

less well one month later.

Discussion

Neurogenesis in the healthy adult brain is principally limited to

two systems: the hippocampal dentate gyrus and the SVZ-OB. Its

conservation across all mammalian species and tight regulation

[5,31–33] suggest that adult neurogenesis may affect behavior. In

Figure 6. Impaired long-term memory in irradiated mice. Mice underwent 8 blocks of 20 trials every day for 4 days, to train them to
distinguish between 1% anisole (rewarded odorant) and 1% cineole (non-rewarded odorant). Mice were tested on the same task after a rest period of
one month, in one block of 20 trials, but with no reward given for a correct response. Representative results for experiments performed in triplicate
are shown. (A–C) Mean values (%) for correct responses in the last block of training (acquisition) and in the first block of testing (memory test) are
shown for each sham-treated (A) and irradiated mouse (B) and for all mice (C). (D) Means of errors in trials 1 to 20 of the memory test session. Two-
way ANOVA followed by unpaired or paired Student’s t tests, as appropriate; * p,0.05 (n = 9–10).
doi:10.1371/journal.pone.0007017.g006
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this study, we investigated the functional consequences for

olfaction of reducing adult neurogenesis. We found that

impairment of the ongoing recruitment of adult-generated OB

neurons altered long-term olfactory memory, but had no effect on

odorant detection or the discrimination, learning and recognition

of social olfactory cues.

Focal irradiation of the SVZ reduced the number of
newborn neurons in the OB

Adult neurogenesis encompasses cell production, cell fate

determination, survival, integration, and the acquisition of

functional neuronal properties in the adult brain [5]. Consistent

with previous studies [26,30], DCX staining demonstrated that

SVZ irradiation reduced the production of newborn neurons in

the SVZ. DCX staining at the time of behavioral testing or seven

months after administration of the final dose of radiation revealed

a long-lasting effect on OB neurogenesis. Focal irradiation led to a

permanent 70% decrease in the number of new neurons produced

in the SVZ or integrated into the OB circuit, consistent with most

newly generated OB neurons being generated by the SVZ in

adults. Further studies are required to identify the types of cell in

the SVZ sensitive or resistant to irradiation. It will be particularly

interesting to determine whether GFAP-positive ‘‘B cells’’ in the

SVZ are resistant to radiation-induced cell death.

Consistent with previous findings, we found that about 50% of

newly generated cells in control mice died four weeks after their

generation. We also showed, for the first time, that cell survival

depended on the overall number of newly produced neurons

reaching the bulb: in irradiated animals, only 30% of 11-day-old

cells reached the bulb, and all were still alive 19 days later (see

Figure 3D). Further immunohistological experiments with other

markers of neurons, astroglial and oligodendroglial cells are

required for the identification of a possible selection of a

subpopulation of radiation- and apoptosis-resistant SVZ/OB cells.

Despite the prolonged survival of the newly generated cells,

irradiated animals made more errors than controls in the long-

term memory task, suggesting that the continuous recruitment of

new neurons, and not the total number of neurons per se, is a key

element in long-term olfactory memory. Further studies are

required to determine whether the surviving cells arising from the

irradiated SVZ are functionally different from those produced in

the non-irradiated forebrain. Similarly, further studies are

required to decipher the mechanisms regulating the survival of

newly generated neurons. It is possible that newly generated

neurons in the OB compete for survival factors (e.g. trophic

factors) just as they compete with existing neurons for many of

their synaptic inputs. Such competition would account for the

longer survival of new neurons in irradiated animals.

The production of new neurons for olfaction
The functional relevance of adult neurogenesis remains an

unresolved issue in neural stem cell biology. One general strategy

used to address this problem involves studying the effects on

behavior of inhibiting proliferation in a neurogenic area. In this

study, we investigated three types of olfactory function, to assess

the effects of reducing adult neurogenesis on odorant detection,

discrimination and memory. Both spontaneous and reinforced

discrimination tests were used to investigate potential differences in

olfactory functions [34]. Irradiated mice exposed to synthetic

odorants discriminated between these odorants as efficiently as

sham-treated mice. This finding is consistent with previous studies

showing that neonatal irradiation or the genetic blockade of adult

neurogenesis does not impair olfactory discrimination [11,35].

However, this result contrasts with previous data obtained in

NCAM-knockout mice [21] and BDNF Val66Met knock-in mice

[22], both of which displayed disrupted neurogenesis. This

discrepancy may be due to the impairment of neurogenesis during

embryogenesis rather than the disruption of neurogenesis during

adulthood.

Irradiation had no effect on social investigation on the basis of

olfactory cues (reviewed in [36]). By contrast, Iwata et al. [37]

observed social interaction deficits in animals subjected to

irradiation of the entire forebrain, leading to various undesirable

side effects. For example, irradiated rats displayed abnormal

locomotor activity, introducing a potential bias into behavioral

tests. No such abnormal behavior was observed in our model,

probably due to the more restricted ablation of adult neurogenesis.

Most newly produced neurons remaining in the OB after

learning are still present several weeks later and can develop

thousands of spines [9,14,15,29]. New neurons may be specifically

involved in formation of the synaptic network serving as the

structural basis for long-term synaptic changes (the cell-autonomous

hypothesis). This hypothesis is supported by previous results

demonstrating that newly generated neurons are unique in that

1) they have lower thresholds for synaptic plasticity [38,39], 2) they

induce ‘‘synaptic disquietude’’ [40], 3) they increase complexity at

the ‘gate to long-term memory’ [41], and 4) they trigger unique

responses during odorant familiarization [42]. Thus, bulbar

neurogenesis may increase plasticity in several ways, including

the addition of new cells, the structural remodeling of neural

circuits, and synaptogenesis, and changes in synaptic strength. All

these forms of plasticity are consistent with the neurons generated

during adulthood being required for long-term olfactory memory.

Alternatively, OB neurogenesis may play an important role in the

functioning of pre-existing networks (the host circuit hypothesis). The

activity of established circuits depends on sensory inputs (i.e., the

sensory space) and centrifugal fibers (i.e., the internal state). It is

possible that new neurons are the main targets of experience-

induced changes in the activity of sensory inputs and/or

centrifugal fibers, acting as key elements in the retrieval or recall

of memory traces. Further experiments are required to test these

two hypotheses specifically.

Our findings suggest that there is a correlation between adult

neurogenesis and long-term olfactory memory. Similar correla-

tions also emerged from theoretical studies demonstrating the

involvement of adult neurogenesis in memory storage, rather than

in perception or learning [43,44]. Aimone et al. also suggested that

young neurons facilitate the formation of temporal association in

memory [45], and play key role in the encoding of memory [46].

Computer-based studies have indicated a role for constitutive adult

neurogenesis in mnesic function, providing a theoretical back-

ground for future experimental approaches.

Our data support a causal link between the number of new

neurons in the OB and long-term olfactory memory, but we

cannot exclude the possibility that another area of the brain is

affected by SVZ irradiation and participates in the observed

changes in long-term olfactory memory. We also cannot rule out

the possibility of changes in the neuronal or synaptic activity of the

preexisting OB neurons in irradiated animals. Further studies,

involving the selective and reversible inhibition of OB neurogen-

esis, are required to determine whether there is a genuine causal

relationship and investigated the feasibility of attenuating and

recovering memory function.

Neurogenesis may allow an increase in the complexity of the

network for memory consolidation or long-term adaptation

processes during adulthood. Improvements in information pro-

cessing resulting from the incorporation of newly generated

neurons may facilitate olfactory learning and memory formation,
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consistent with the interdependence between memory perfor-

mance and the degree of neurogenesis. Previous studies showing a

transient role for the OB in memory storage support this notion

[47]. The natural replacement of bulbar neurons provides a

rationale for the transfer of memory traces out of the bulb. The

loss of OB neurons may be programmed to occur after the transfer

of traces from these neurons to other parts of the brain.

Alternatively, a rejuvenating population of neurons capable of

rapidly forming synaptic connections may be highly suitable for

the function of the OB in the transient processing of information

sent elsewhere for storage. Our findings suggest that new neurons

are involved in long-term olfactory memory, consistent with the

assumption that new neurons provide unique functions for

olfaction [48].

Materials and Methods

Animals
We used eight-week-old male C57BL/6J (Janvier, Le Genest-

Saint-Isle, France) mice. Animals were housed in groups of four or

five and maintained in standard conditions (12 h/12 h light/dark

cycle, ad libitum access to dry food and water; for olfactometer

experiments, animals were subjected to partial water deprivation,

as described below) in Pasteur Institute animal care facilities

officially registered for experimental studies on rodents (Ministry

approval number for animal care facilities: A 75-15-08; approval

number 75-585 for animal experimentation). All experimental

procedures complied with the European Communities Council

Directive of 24 November 1986 (86/609/EEC) and European

Union guidelines, and were reviewed and approved by our

institutional animal welfare committee.

Irradiation
Mice were irradiated with a medical Alcyon irradiator (gamma-

rays 60Co). They were anesthetized with ketamine (75 mg/kg,

Merial, Lyons, France) and medetomidine (1 mg/kg, Pfizer, Paris,

France) by the intraperitoneal (i.p.) route. They were placed in a

stereotaxic frame (Stoelting, Wood Dale, Illinois, USA) and

exposed to cranial irradiation or not irradiated (sham-treated).

Two lead shields protected the body of the mouse during exposure

of the SVZ to gamma rays. The first shield consisted of a 10 cm-

thick lead brick with a 12 mm diameter circular hole positioned

above the mouse’s head. The second lead shield was 5 cm thick,

with a rectangular opening of 3611 mm, corresponding to the

area of the SVZ (bregma AP: 1.5 and L: 5.5). The OB, RMS and

olfactory epithelium were unaffected by the procedure. Radiation

(five Gray) was delivered at a rate of 1 Gray/min on days 1, 3 and

5. After exposure, mice were woken up by i.p. injection of

atipamezole (1 mg/kg, Pfizer, Paris, France).

BrdU injections
Mice were injected i.p. with a DNA synthesis marker, BrdU

(75 mg/kg, Sigma-Aldrich, St. Louis, MO). They received four

injections, at two-hour intervals, on a single day.

Immunohistochemistry
Mice were deeply anesthetized with sodium pentobarbital

(100 mg/kg, Sanofi, Bagneux, France) and perfused transcardially

with a solution containing 0.9% NaCl and heparin (56103 U/ml,

Sanofi-Synthelabo, Le Plessis-Robinson, France) at 37uC, followed

by 4% paraformaldehyde (PFA) in cold phosphate buffer (PB),

pH 7.3. Brains were dissected out and post-fixed by incubation at

4uC in 4% PFA in PB, overnight for BrdU and for one week for

DCX staining. Slices were transferred to phosphate-buffered saline

(PBS) and kept at 4uC until use. Immunohistochemistry was

carried out on 40 mm-thick free-floating serial coronal sections of

the brain cut with a vibrating microtome (VT1000S, Leica, Rueil-

Malmaison, France) and collected in 0.2% sodium azide (Sigma) in

PBS. Brain sections were washed in PBS and treated with 0.2%

Triton X-100, 4% bovine serum albumin (both purchased from

Sigma) in PBS for 2 h, to non-specific protein binding and to

permeabilize membranes. For BrdU staining, sections were treated

with 2 N HCl for 30 minutes at 37uC. BrdU and DCX were

detected by incubation with a rat monoclonal anti-BrdU antibody

(C18, 1: 200; Immunologicals Direct, UK) or a goat anti-DCX

antibody (1:200; Santa Cruz Biotechnology, Santa Cruz, CA,

USA). Labeled cells were detected with a peroxidase-conjugated

secondary antibody (ABC system, Vector Laboratories, Inc.,

Burlingame, CA, USA), using biotinylated donkey anti-rat or

horse anti-goat IgG (1:200, Vector Laboratories) and 3,39-

diaminobenzidine (0.05%) as a chromogen (Sigma).

Image analysis for BrdU+ cell counting
We obtained reconstructed images with a 206objective for one

in every six coronal sections of the OB (six sections in total) for

each animal (Compix Imaging; Hamamatsu Photonics, Massy,

France). BrdU+ cells were automatically counted with a dedicated

stereological computer program [49]. The internal and external

borders of the GL and GCL were drawn manually and cells

detected in the entire layer or in the GL, EPL and GCL were

counted. Values are expressed as the mean total BrdU+ cell count

in six sections of the OB per animal. For hippocampal analysis,

values are expressed as the mean total number of BrdU+ cells

counted manually in eight sections of the dentate gyrus per animal.

Measurement of optical density
DCX expression was quantified by measuring optical density

with a dedicated stereological computer program [49], for one in

every six coronal sections of the OB and in equivalent selected

sections containing the SVZ. After manual selection of the brain

area to be analyzed, the density of staining was calculated by

dividing the pixel count by the overall area (pixels per mm2).

Spontaneous discrimination of synthetic odorants
Olfactory discrimination. For the olfactory discrimination

task, we used a slightly modified version of the habituation–

dishabituation test described elsewhere [21]. The test cages were

boxes of 36623.5613 cm (length6width6height), with two

compartments separated by an aluminum partition (holes 0.5 cm

diameter). The lower compartment was 2.5 cm high. Animals

were exposed to odors by placing a filter paper dish (70 mm

diameter, #1440 070; Whatman, Florham Park, NJ, USA),

impregnated with 0.4% odorant in 10 ml of odorless mineral oil

(odorants and mineral oil obtained from Sigma) in the lower

compartment. Four days before the experiment, the animals were

familiarized with the test cage and the procedure by exposing

them to mineral oil. Mice underwent one session per day. The

mouse was placed in the test cage for 10 minutes and exposed to

mineral oil for 2 minutes before each session. Mice were trained

with six exposures to 0.4% linalool. They were then exposed to

odorants as follows:

– Four successive exposures to the first odorant (habituation

odor);

– One exposure to a second similar odor;

– Two exposures to the habituation odor;

– One exposure to a dissimilar odorant (dishabituation).
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Each exposure lasted 90 seconds. An interval of 2 minutes was

left between trials. We recorded the time that the animals spent

investigating the odorant for each experiment. Animals were

considered to have recognized an olfactory stimulus when they

spent significantly less time investigating an odorant introduced

into the cage for a second time.

Short-term olfactory memory. Mice were exposed to mint

odorant twice (5 minutes each), with a two-minute interval

between the two exposures. They were then exposed to this

odorant again after a rest period of 30 minutes. The time spent

investigating the odorant was recorded for each animal.

Social interaction. Social interaction was tested in the same

test cages used for spontaneous discrimination. Each mouse was

tested for 5 minutes with a C57BL/6 mouse of the same age, sex

(male) and weight, reared in the same conditions (in the same

animal facilities, in similar cages, each containing 4 to 5 mice).

Social interaction was measured as the time the test subject (sham-

treated or irradiated) spent interacting with the other mouse

(interacting social behavior included following the other animal,

anogenital sniffing and allogrooming).

Olfactory performance in automated olfactometers. Mice

were maintained on a 1 ml/day water deprivation diet for 10 days

and then trained in a go/no-go discrimination task in Knosys

(Bethesda, MD) computer-controlled olfactometers, as previously

described [50]. Mice were trained to respond to the presence of an

odorant dissolved in mineral oil (positive stimulus, S+) by licking the

water delivery tube situated within the odorant sampling port, and to

refrain from responding to the presence of another odorant (negative

stimulus, S-). These two types of trials were carried out in a modified

random order, such that an equal number of each type occurred in

each block of 20 trials and one type of trial did not occur more than

three times consecutively. A response in an S+ trial and an absence of

response in an S– trial were scored as correct. Accuracy was scored

for each block of 20 trials. Mice underwent a session of eight to 10

blocks of trials per day. All odorants were diluted in mineral oil and

their concentrations are given as the dilution of the odorant in the

saturator bottles.

Odorant detection threshold. Mice were trained, in the air

dilution olfactometer, to detect successively lower concentrations

of (+)-carvone diluted in mineral oil. Each concentration was given

for 10 blocks of 20 trials each day. In each session, (+)-carvone

vapor served as the S+ stimulus and mineral oil served as the S–

stimulus. The concentrations of (+)-carvone used in these tests

were 0.001, 0.0001, 0.00001 and 0.000001%.

Olfactory discrimination tasks. Mice were trained in a

series of two-odorant discrimination tasks using the eight-channel

olfactometer. Each mouse was subjected to eight blocks of 20 trials

for each of the following tasks:

– Task 1: S+ was 1% anisole and S- was 1% cineole.

– Task 2: S+ was 0.1% n-amyl acetate and S- was 1% linalool.

– Task 3: S+ was 1% butanoic Acid and S- was 1% beta-ionone.

– Task 4: S+ was 1% (+)-limonene and S– was 1% (+)-carvone.

Mice not fulfilling the performance criterion of 90% correct

responses in two successive 20-trial blocks underwent further

training in daily 200-trial sessions until this level of perfor-

mance was reached.

– Task 5: Eight-odorant discrimination. Upon completing tasks

1–4, each mouse was given additional training, in which they

were exposed to the eight odorants used in tasks 1–4 in two

blocks of 40 trials. Stimuli were introduced in a modified

random order such that, within each block of 40 trials, mice

were exposed to the S+ and S– stimuli five times each.

Odorant mixture discrimination tasks. Mice were trained

to distinguish 1% (+)-carvone from (2)-carvone in 10 blocks of 20

trials (Task 1). Then they were given 10 blocks of 20 trials for each

of the following two-odorant mixture tasks:

Task 2: S+ was 0.8% (+)-carvone +0.2% (2)-carvone and S- was

0.2% (+)-carvone +0.8% (2)-carvone.

Task 3: S+ was 0.7% (+)-carvone +0.3% (2)-carvone and S- was

0.3% (+)-carvone +0.7% (2)-carvone.

Task 4: S+ was 0.6% (+)-carvone +0.4% (2)-carvone and S- was

0.4% (+)-carvone +0.6%(2)-carvone.

Task 5: S+ was 0.52% (+)-carvone +0.48% (2)-carvone and S-

was 0.48% (+)-carvone +0.52% (2)-carvone.

Long-term memory test. We followed the memory test

procedure described by Bodyak and Slotnick [50], with minor

modifications. Mice were given four daily training sessions of eight

blocks of 20 trials for a two-odorant task (S+ was 1% anisole and S-

was 1% cineole). Mice were then left for 32 days in their home

cages, with partial water deprivation for the last 10 days. They

were given no water on day 31. The following day, each mouse

was subjected to a 20-trial memory test for the two-odorant task.

No reinforcement was given for correct responses in this session.

Mice therefore received no feedback concerning whether their

responses were correct or incorrect.

Statistical analysis. All data are expressed as means6SEM.

Statistical analyses were carried out with Prism software (Graphpad

Software, San Diego, USA). For immunohistochemistry data, we

used Student’s t-test. Behavioral data were analyzed with parametric

methods: unpaired Student’s t-tests were used to compare the two

groups, with unpaired observations to assess social interaction.

Spontaneous discrimination and olfactometer data were analyzed by

standard two-way analysis of variance (ANOVA) followed by

unpaired or paired Student’s t-tests, as appropriate.

Supporting Information

Figure S1 Irradiation did not alter the morphology of DCX+
cells reaching the OB. Dendrites were counted for DCX+ cells in

the GCL, EPL and GL of sham and irradiated mice, 7 months

after irradiation. P.0.05 with Student’s t-test (n = 25 from 5

random cells analyzed per OB layer and from 5 mice per group).

Found at: doi:10.1371/journal.pone.0007017.s001 (2.75 MB EPS)

Figure S2 Focal SVZ irradiation inhibited the recruitment of

new neurons in the OB but not in the hippocampus. New cells

were labeled with BrdU 3 days after the final focal irradiation and

survival was evaluated 11 days later. The mean number of BrdU+
cells in the GCL of the OB and in the dentate gyrus of the

hippocampus was determined for sham and irradiated mice.

** indicates p,0.01, Student’s t test, n = 6 mice per group.

Found at: doi:10.1371/journal.pone.0007017.s002 (4.54 MB EPS)

Table S1 Complete statistical analysis on neurogenesis data.

Found at: doi:10.1371/journal.pone.0007017.s003 (0.04 MB

RTF)

Table S2 Complete statistical analysis on spontaneous discrim-

ination.

Found at: doi:10.1371/journal.pone.0007017.s004 (0.08 MB

RTF)

Table S3 Complete statistical analysis for operant conditioning.

Found at: doi:10.1371/journal.pone.0007017.s005 (0.11 MB

RTF)

Table S4 Statistical analysis on 2-odor memory test.

Found at: doi:10.1371/journal.pone.0007017.s006 (0.03 MB

RTF)
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