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ABSTRACT21

22

PV-induced apoptosis seems to play a major role in tissue injury in the central nervous system23

(CNS). We have previously shown that this process involves PV-induced Bax-dependent24

mitochondrial dysfunction mediated by early JNK activation in IMR5 neuroblastoma cells.25

We show here that PV simultaneously activates the phosphatidylinositol 3-kinase (PI3K)/Akt26

survival signaling pathway in these cells, limiting the extent of JNK activation, and thereby27

cell death. JNK inhibition is associated with PI3K-dependent negative regulation of the28

apoptosis signal-regulating kinase 1 (ASK1), which acts upstream from JNK in PV-infected29

IMR5 cells. In poliomyelitis, this survival pathway may limit the spread of PV-induced30

damage in the CNS.31
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Poliovirus (PV), from the Picornaviridae family, causes paralytic poliomyelitis — a32

disease in which the motor neurons are destroyed in association with PV replication. PV33

consists of a single-stranded positive RNA genome surrounded by a nonenveloped34

icosahedral protein capsid. The human PV receptor, CD155, and its simian counterparts35

belong to the immunoglobulin superfamily (24, 25, 31) and are related to the nectin family of36

adhesion molecules (28, 38).37

PV is mostly transmitted via the fecal-oral route. It first infects the oropharynx and the38

digestive tract, and then spreads to the central nervous system (CNS) in which it mostly39

targets motor neurons. Studies in mouse models have shown that PV-infected motor neurons40

in the spinal cord die by apoptosis (10, 19). PV-induced apoptosis therefore seems to play a41

major role in the tissue injury occurring in the CNS.42

PV triggers apoptosis in vitro in tissue cultures of human colon carcinoma cells43

(CaCo-2) (4), promonocytic cells (U937) (29), dendritic cells (41), murine L cells expressing44

CD155 (21, 36), HeLa cells (8, 39) and cultures of mixed mouse primary nerve cells (12)45

from the cerebral cortex of mice transgenic for CD155. Analyses of the apoptotic pathways46

induced following PV infection in several cell lines have demonstrated that mitochondria are47

key actors of PV-induced apoptosis. In particular, mitochondrial outer membrane48

permeabilization (MOMP) following PV infection leads to a loss of mitochondrial49

transmembrane potential and the release of proapoptotic molecules, including cytochrome c,50

from the mitochondria to the cytosol (8, 21). We recently demonstrated that MOMP in PV-51

infected neuronal IMR5 cells was dependent on Bax, a proapoptotic member of the Bcl-252

family. Bax activation was mediated by c-Jun NH2-terminal kinase (JNK) phosphorylation53

after PV infection (6). JNK activation occurred early after PV infection whereas apoptotic54

features were observed later in PV-infected cells. These events may involve a balance55

between pro- and antiapoptotic signals following PV infection. Pro- and antiapoptotic events56



4

potentially acting in synergy or competing with each other during the reproduction cycle of57

PV have been described by Agol's group (1, 39). However, the mechanisms involved in58

maintaining this delicate balance remain unclear.59

Cells become committed to undergoing apoptosis in response to a collection of60

multiple survival and death signals. The phosphatidylinositol 3-kinase (PI3K) signaling61

pathway plays a crucial role in the transmission of survival signals in various cell types (14,62

26), including neurons (16). PI3K activates its downstream effector, the serine-threonine63

kinase Akt (also known as protein kinase B, PKB) by promoting its phosphorylation at the64

residues Thr308 and Ser473. Activated Akt then phosphorylates various substrates, activating65

antiapoptotic factors and inactivating proapoptotic factors. The role of PI3K/Akt in the66

regulation of cell survival and apoptosis in a number of viral infection models (11, 13, 17, 27,67

30), including infection with coxsackievirus B3 (18), rhinovirus (32), foot-and-mouth disease68

virus (35) and enterovirus 71 (40, 43) — all members of the Picornaviridae family — has69

recently been investigated.70

71

PV activates the PI3K/Akt survival signaling pathway in IMR5 cells72

We began by determining whether PV infection of IMR5 neuroblastoma cells resulted73

in Akt activation. IMR5 cells were infected with PV as previously described (6). Briefly, the74

growth medium (DMEM supplemented with 10% FBS) was discarded. The virus was then75

added to monolayers at a multiplicity of infection (MOI) of ten 50% tissue culture infective76

dose units (TCID50) per cell (this MOI was used for all assays performed in this study).77

Adsorption was allowed to proceed for 30 min at 37°C in humidified air containing 5% CO2.78

Cells were then washed twice with serum-free medium to remove unbound particles and79

incubated with fresh DMEM supplemented with 10% FBS at 37°C. The virus was allowed to80

grow for the indicated times. Time zero postinfection (p.i) corresponds to the inoculation time81
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point. Mock-infected cells were used as a negative control. As previously described (6), both82

adherent and detached cells were taken into account in all experiments. Kinetics of Akt83

phosphorylation at serine 473 (Ser473), which is required for full Akt activation (3), was84

investigated in mock- and PV-infected cells. Whole-cell lysates were analyzed at the indicated85

times p.i. by Western blotting with a specific anti-phospho (Ser473)-Akt antibody (Fig. 1A).86

We checked for equal protein loading on the total Akt Western blot. The amount of87

phosphorylated Akt increased until 30 min p.i., and then decreased; at 4 h p.i., the amount of88

phosphorylated Akt present was similar to that in mock-infected cells analyzed at the same89

time point. To check that the virus stock used in this study did not contain host-derived90

components that may activate Akt signaling pathway, we depleted the virus suspension of PV91

using an anti-PV antibody and infected cells with either the depleted or non-depleted92

suspension. In contrast to cells infected with the non-depleted stock, no Akt activation (3093

min p.i.) was detected in cells treated with the depleted suspension (Fig. 1A, bottom, left). We94

also checked that poliovirus, purified by isopycnic CsCl gradient centrifugation (9), could95

promote Akt activation (30 min p.i.), at an efficiency similar to that obtained with the virus96

preparations used in this study (Fig. 1A, bottom, right). We then investigated whether Akt97

activation in response to PV infection occurred through the PI3K pathway, by treating IMR598

cells with a specific PI3K inhibitor, wortmannin (5), at a concentration of 100 nM and 50099

nM, 2 h before mock or virus infection. The concentration of the inhibitor was maintained100

during the adsorption period and PV infection. Cell lysates were collected 30 min after101

infection and subjected to Western blot analysis for the detection of Akt phosphorylation (Fig.102

1B, top). Wortmannin inhibited Akt phosphorylation at both concentrations without altering103

total Akt levels. The activation of Akt in response to PV infection was illustrated by104

immunofluorescence staining, 30 min p.i., with the same anti-phospho (Ser473)-Akt antibody.105

Representative staining patterns for mock-infected and PV-infected IMR5 cells treated with106
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wortmannin or left untreated are presented (Fig. 1B, bottom). As expected,107

immunofluorescence staining was detected only in infected cells in the absence of108

wortmannin. Thus, the rapid PV-induced phosphorylation of Akt involves a PI3K-dependent109

mechanism.110

We investigated whether PV adsorption onto IMR5 cells induced Akt activation in the111

absence of PV replication by assessing Akt phosphorylation after the addition of UV-112

inactivated PV (UV cross-linked at 6,000 µJ/cm2) to IMR5 cells at a dilution corresponding to113

an MOI of 10 TCID50 per cell (6). The complete abolition of viral infectivity by UV light114

treatment was confirmed by titration assay with undiluted viral suspension. We also checked115

that UV inactivation did not modify virus adsorption on cells, by comparing the binding116

efficiency of infectious and UV light-treated PV labeled with [35S]methionine (data not117

shown). Akt phosphorylation was induced in IMR5 cells 30 minutes after the addition of UV-118

inactivated PV, with an efficiency similar to that observed with infectious PV (Fig. 2). Thus,119

PV-cell receptor interaction alone is sufficient to induce Akt phosphorylation in the absence120

of viral replication.121

122

PI3K/Akt signaling pathway limits the amplitude of Bax activation, cytochrome c123

release and apoptosis in PV-infected IMR5 cells124

We assessed the role of the PI3K/Akt signaling pathway in regulating the125

mitochondrial pathway of apoptosis in PV-infected cells, by blocking PI3K activation with126

wortmannin. The mitochondrial pathway is regulated by members of the Bcl-2 family,127

including the proapoptotic protein Bax, which promotes the release of cytochrome c. Bax-128

mediated cell death involves several well-controlled steps, including a conformational change129

resulting in exposure of the NH2-terminus. Mock- and PV-infected IMR5 cells were left130

untreated or were treated with 100 nM wortmannin for 2 h before PV infection. The131
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concentration of the inhibitor was maintained throughout both PV adsorption and replication.132

At 8 h p.i., a time point at which Bax activation is known to occur in PV-infected cells (6),133

whole-cell lysates were prepared in a lysis buffer containing 1% of the zwitterionic detergent134

CHAPS, which has no effect on Bax conformation (22). Bax was then immunoprecipitated135

with an anti-Bax antibody (6A7) that specifically recognizes Bax protein with an exposed136

NH2 terminus. The Bax protein immunoprecipitated from mock- and PV-infected cells was137

visualized by Western blotting (Fig. 3A, top). No activated Bax was detected in the138

immunoprecipitates from mock-infected cells. Consistent with our previous report (6), Bax139

was immunoprecipitated with the 6A7 antibody at 8 h p.i., indicating that PV infection was140

responsible for inducing the change in Bax conformation. Wortmannin enhanced Bax141

activation in IMR5-infected cells, without affecting the total amount of Bax (Fig. 3A,142

bottom). The effect of wortmannin on cytochrome c efflux from the mitochondria of PV-143

infected cells was also investigated. Whole-cell extracts from mock- or PV-infected cells were144

fractionated at 8 h p.i., to separate the cytosolic fraction from the heavy membrane fraction,145

including mitochondria, as previously described (6). Cytochrome c release was analyzed by146

Western blotting the cytosolic fraction. Much more cytochrome c was released in response to147

PV infection in cells treated with wortmannin than in untreated infected cells (Fig. 3B). These148

results suggest that PI3K may inhibit Bax-dependent MOMP during the PV infection of149

IMR5 cells.150

We investigated the possible involvement of PV-mediated PI3K activation in the151

inhibition of apoptosis, by analyzing the kinetics of apoptosis in mock infected and infected152

cells treated or not treated with the specific PI3K inhibitor, wortmannin (Fig. 3C). Adherent153

and detached cells were harvested at the indicated times p.i. and apoptosis was analyzed by154

assessing chromatin condensation and fragmentation by flow cytometry after acridine orange155

(AO) nuclear dye staining, as previously described (6). We found that levels of PV-induced156
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apoptosis were higher in infected cells treated with wortmannin than in untreated infected157

cells. To confirm the role of PI3K/Akt signaling pathway in limiting PV-induced apoptosis,158

we down-regulated Akt expression with a specific siRNA. Western blot analysis with a159

specific antibody showed that Akt expression in IMR5 cells transfected with Akt siRNA was160

significantly weaker than in cells transfected with a nontargeted control siRNA (Fig. 3D, left).161

As expected, following PV infection (8 h p.i.), apoptosis levels were higher in Akt162

knockdown cells than in nontargeted control siRNA-transfected cells (Fig. 3D, right). These163

results suggest that PI3K/Akt pathway plays a role in inhibiting the mitochondrial apoptotic164

pathway in PV-infected IMR5 cells.165

166

The PI3K/Akt signaling pathway does not affect PV growth, but delays PV release167

We evaluated the effects of PI3K/Akt signaling on the amount of total virus produced168

in IMR5 cells, by determining the kinetics of total virus yield by TCID50 assays in the169

presence or absence of wortmannin. PI3K/Akt pathway inhibition had no effect on the total170

amount of virus produced (Fig. 4). As PV-induced apoptosis levels were higher in infected171

cells treated with wortmannin than in untreated infected cells, we assessed the possible effects172

of the increase in apoptosis levels on externalization of the virus. Viruses were released earlier173

in the presence of wortmannin (Fig. 4). Thus, PI3K/Akt seems to delay viral release without174

affecting virus production.175

176

The PI3K/Akt signaling pathway limits JNK activation in PV-infected cells177

We have shown that Bax-dependent activation of the mitochondrial pathway of178

apoptosis is mediated by early JNK activation (6). JNK activation peaks 30 min p.i and then179

decreases in IMR5 neuroblastoma cells. It is possible that the PI3K/Akt pathway down180

regulates the JNK pathway, as recently reported in nonviral models (2, 23).181
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We assessed the effects of PI3K/Akt on JNK activation in PV-infected cells, by182

treating cells with wortmannin. JNK activation was investigated 30 min p.i., by Western183

blotting whole-cell lysates with an antibody against phosphorylated forms of JNK (Fig. 5A).184

As expected, phosphorylated JNK was detected 30 min p.i.. Larger amounts of185

phosphorylated JNK were found in infected cells treated with wortmannin than in untreated186

cells. Thus, activation of the PI3K/Akt pathway limits JNK activation in PV-infected IMR5187

cells.188

189

JNK activation is limited by the Akt-mediated phosphorylation of ASK1 in PV-infected190

cells191

We then examined the possibility that a kinase, upstream of JNK, was inhibited by192

Akt, causing the observed limited JNK phosphorylation in PV-infected cells. Apoptosis193

signal-regulating kinase 1 (ASK1) has been shown to be a key regulator of the JNK pathway194

amenable to inhibition by Akt-mediated phosphorylation at Ser83 in nonviral systems (2, 23).195

We assessed the possible involvement of ASK1 in JNK activation in PV-infected IMR5 cells,196

by down-regulating ASK1 expression using specific siRNA (37). Western blot analysis with a197

specific antibody showed that ASK1 levels were significantly lower in IMR5 cells transfected198

with ASK1 siRNA than in cells transfected with a nontargeted control siRNA (Fig. 5B, left).199

Moreover, following PV infection, JNK activation in ASK1 knockdown cells was weaker200

than in cells transfected with the nontargeted control siRNA (Fig. 5B, right). Thus, ASK1201

plays an important role in JNK activation following PV infection in IMR5 cells.202

We then investigated the possible limitation of ASK1 activity by PI3K/Akt-mediated203

phosphorylation at Ser83 in PV-infected cells. The kinetics of ASK1 phosphorylation at204

Ser83 in PV-infected cells was analyzed by Western blotting with a specific antibody against205

phosphorylated ASK1 (Fig. 5C). A transient increase in the level of ASK1 phosphorylation206
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was evident 30 minutes after infection, consistent with the pattern of Akt activation.207

Furthermore, treatment of the cells with the PI3K inhibitor wortmannin abolished the increase208

in ASK1 phosphorylation in PV-infected cells (Fig. 5D). Altogether, these results indicate209

that the PI3K/Akt pathway negatively regulates JNK activation by phosphorylating and210

inactivating ASK1 in PV-infected IMR5 cells.211

This study provides evidence that the early PI3K/Akt survival pathway limits the212

magnitude of PV-induced JNK activation and cell death in IMR5 cells. We previously213

showed that PV-cell receptor interaction alone is sufficient to induce JNK phosphorylation, as214

for Akt activation. However, we also showed that JNK phosphorylation is necessary, but not215

sufficient, to trigger apoptosis that seems to require the active replication of PV. As216

previously reported by Agol's group (1, 39), several different courses of events may influence217

apoptosis in PV-infected cells between 30 min and 6-8 h p.i. These events may involve the218

interplay between cellular and viral proteins (7, 15, 20, 33, 34, 42). Thus, the early PI3K/Akt219

survival pathway seems to act upstream of this unidentified interplay. The PI3K/Akt pathway220

has been shown to play an antiapoptotic role in several viral infections (11). However, this is221

the first report, to our knowledge, of the limitation of JNK activation by PI3K/Akt mediating222

a survival pathway during a viral infection. We have also shown that the cross-talk between223

the PI3K/Akt and JNK pathways involved ASK1 inhibition. In poliomyelitis, this survival224

pathway may limit the spread of PV-induced damage in the CNS.225
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365

FIGURE LEGENDS366

367

Fig. 1. PV induces early Akt phosphorylation in a PI3K-dependent manner in IMR5368

neuroblastoma cells369

(A) Kinetics of Akt activation in PV-infected neuronal cells. (Top) Akt activation was370

analyzed in whole-cell lysates at the indicated times p.i., by Western blotting with a specific371

anti-phospho (Ser473)-Akt antibody (Cell Signaling). Whole-cell lysates from mock-infected372

cells were analyzed at 30 min (first lane) and 240 min (last lane) post mock-infection,373

respectively. Blots were then stripped and reprobed with an antibody recognizing all forms of374

Akt (Cell Signaling), to confirm equal protein loading. (Bottom) Western blot analyses of Akt375

activation 30 min p.i.. (Left) Cells were infected with viral stock (PV) or viral stock depleted376

of PV (PV depleted) with anti-PV antibody. (Right) Cells were infected with viral stock (PV) or377

CsCl-purified PV (PV purified). (B) Inhibition of Akt phosphorylation during PV infection in378
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IMR5 cells treated with the PI3K inhibitor, wortmannin (Calbiochem, 100 nM and 500 nM).379

(Top) Cells were incubated or not incubated with the PI3K inhibitor for 2 h before PV380

infection, and the concentration of the inhibitor was maintained during the adsorption period381

and throughout PV infection. Levels of phospho (Ser473)-Akt in whole-cell lysates were382

determined by Western blotting, 30 min p.i.. Blots were then stripped and reprobed with an383

antibody recognizing all forms of Akt, to confirm equal protein loading. (Bottom) Mock- and384

PV-infected IMR5 cells (30 min p.i.), treated or not treated with wortmannin (100 nM), were385

stained for immunofluorescence with a specific antibody against phospho (Ser473)-Akt and a386

secondary, fluorescein isothiocyanate-conjugated antibody (green) (middle panel). Nuclei387

were stained with 4',6-diamidino-2-phenylindole (DAPI) (blue) (left panel). Merge, overlay of388

the DAPI image with the anti-phospho (Ser473)-Akt image (right panel).389

390

Fig. 2. UV-inactivated PV induces early Akt activation in IMR5 cells. Akt activation was391

analyzed by Western blotting whole-cell lysates from cells infected with infectious or UV-392

inactivated PV (30 min p.i.) with specific anti-phospho (Ser473)-Akt antibody. Blots were393

then stripped and reprobed with an antibody recognizing all forms of Akt, to confirm equal394

protein loading.395

396

Fig. 3. Inhibition of the PI3K/Akt signaling pathway enhances PV-induced apoptosis in397

IMR5 cells398

(A) Enhancement of Bax activation in PV-infected cells treated with wortmannin. (Top) Cells399

were uninfected or infected with PV (8 h p.i.) in the presence or absence of wortmannin (100400

nM). Cells were lysed in immunoprecipitation buffer. Conformationally active Bax protein401

was immunoprecipitated (IP) with anti-Bax 6A7  antibody (Santa-Cruz) and precipitates were402

immunoblotted with anti-Bax antibody. The asterisk indicates immunoglobulin light chains.403
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(Bottom) Whole-cell lysates not incubated with 6A7 antibody were similarly tested for total404

Bax by immunoblotting with a specific antibody (Upstate) to check that the amounts of Bax405

protein in samples before immunoprecipitation were equivalent. Actin was used as a control406

for protein loading. (B) Greater cytochrome c (Cyt c) release in PV-infected cells treated with407

wortmannin. Cytochrome c release was analyzed in cytosolic fractions of mock-infected and408

PV-infected IMR5 cells (8 h p.i.) treated or not treated with wortmannin (100 nM) by409

Western blotting with a specific antibody (BD Pharmingen). Actin was used as a protein410

loading control. Protein levels were determined by densitometry and plotted as ratios relative411

to the actin levels. (C) Enhancement of apoptosis in PV-infected cells treated with412

wortmannin. Mock-infected and PV-infected IMR5 cells treated (black) or not treated (light413

gray) with wortmannin (100 nM) were analyzed at the indicated times p.i. by flow cytometry414

after Acridine Orange (AO, Molecular Probes) staining, and the increase (n-fold) in apoptosis415

was calculated as the ratio of the percentage of PV-infected IMR5 cells that were apoptotic to416

the percentage of mock-infected cells that were apoptotic. Data are means from three417

independent experiments. Error bars represent the standard errors of the means. *, P<0.05 by418

Student’s t test comparing untreated IMR5 cells to treated IMR5 cells. (D) Higher levels of419

apoptosis were observed after the knockdown of Akt expression in PV-infected cells. (Left)420

IMR5 cells were transfected with Akt siRNA (Cell Signaling) or nontargeted control siRNA421

(Cell Signaling) or left untreated. Akt protein was then assayed by immunoblotting with422

extracts from nontargeted control siRNA-transfected, Akt siRNA-transfected or untreated423

cells. Actin was used as a protein loading control. (Right) Cells were uninfected or were424

infected (8 h p.i.) with PV 72 h after transfection, and cells were analyzed by flow cytometry425

after AO staining and the increase (n-fold) in apoptosis was calculated as the ratio of the426

percentage of PV-infected IMR5 cells that were apoptotic to the percentage of mock-infected427

cells that were apoptotic. Data are means from three independent experiments. Error bars428
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represent the standard errors of the means. *, P<0.05 by Student’s t test comparing untreated429

IMR5 cells to treated IMR5 cells.430

431

Fig. 4. Effect of PI3K/Akt signaling inhibition on PV growth and externalization432

IMR5 cells were infected with PV in the presence or absence of wortmannin (100 nM). Total433

virus yield (extracellular and intracellular) was determined by TCID50 assay at the indicated434

times after three cycles of freezing and thawing to release intracellular viruses. Extracellular435

virus titer was determined from the supernatant of PV-infected cells at the indicated times436

after the removal of detached cells by centrifugation. Each point represents the mean virus437

titers for two independent experiments. Standard errors of the mean are indicated, *P<0.05 by438

a Student t test comparing untreated to treated IMR5 cells.439

440

Fig. 5. The PI3K/Akt signaling pathway limits JNK activation by promoting ASK1441

phosphorylation in PV-infected IMR5 cells442

(A) JNK activation levels are higher in PV-infected cells treated with wortmannin. Cells were443

uninfected or infected with PV (30 min p.i.) in the presence or absence of wortmannin (100444

nM). JNK activation was analyzed in whole-cell lysates, by Western blotting with a specific445

anti-phospho (Thr183/Tyr185)-JNK (p46 [JNK1] and p54 [JNK2/3]) antibody, as previously446

described (6). Blots were then stripped and reprobed with an antibody recognizing all forms447

of JNK, to confirm equal protein loading. (B) Inhibition of JNK activation after the448

knockdown of ASK1 expression in PV-infected IMR5 cells. (Left) IMR5 cells were449

transfected with ASK1 siRNA (37) or nontargeted control siRNA (Cell Signaling) or left450

untreated. ASK1 protein was then assayed by immunoblotting with extracts from nontargeted451

control siRNA-transfected, ASK1 siRNA-transfected or untreated cells. Actin was used as a452

protein loading control. (Right) Untreated, nontargeted control and ASK1 siRNA transfected453



20

IMR5 cells were uninfected or infected with PV. JNK activation was analyzed (30 min p.i.) in454

whole-cell lysates, by Western blotting with a specific anti-phospho (Thr183/Tyr185)-JNK455

antibody. Blots were then stripped and reprobed with an antibody recognizing all forms of456

JNK, to confirm equal protein loading. Phosphorylated JNK protein levels were determined457

by densitometry and plotted as the ratios, relative to the levels of total JNK. Phosphorylated458

JNK levels following PV infection in untreated cells were taken as 100%. Data are means459

from three independent experiments. Error bars represent the standard errors of the means. *,460

P<0.05 by Student’s t test comparing nontargeted control siRNA-transfected IMR5 cells to461

ASK1 transfected IMR5 cells. (C) Phosphorylation of ASK1 in PV-infected neuronal cells.462

ASK1 phosphorylation was analyzed in whole-cell lysates at the indicated times p.i., by463

Western blotting with a specific anti-phospho (Ser83)-ASK1 antibody (Cell Signaling). Blots464

were then stripped and reprobed with an antibody recognizing all forms of ASK1 (Cell465

Signaling), to confirm equal protein loading. (D) Inhibition of PV-induced ASK1466

phosphorylation by the PI3K/Akt pathway inhibitor wortmannin. Cells were uninfected or467

infected with PV in the presence or absence of wortmannin (100 nM). ASK1 phosphorylation468

was analyzed (30 min p.i.) in whole-cell lysates by Western blotting with a specific anti-469

phospho (Ser83)-ASK1 antibody. Blots were then stripped and reprobed with an antibody470

recognizing all forms of ASK1, to confirm equal protein loading. Phosphorylated ASK1471

protein levels were determined by densitometry, and plotted as the ratios relative to the levels472

of total ASK1.473












