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Abstract 

The peripheral expansion of α/ß+-CD4-CD8- double negative (DN) T cells in patients with 

autoimmune lymphoproliferative syndrome (ALPS) is a consistent feature of this disease, and part 

of the diagnostic criteria of ALPS. The origin of these cells remains undetermined. They could 

derive from mature T cells that have lost co-receptor expression, or represent a special minor cell 

lineage. To investigate relationship of DN and single positive (SP) T cells in ALPS, we used 

Immunoscope technology to analyze the TCRVß repertoire diversity of sorted DN and SP T cells, 

and we performed CDR3 sequence analyses of matching clonotypes. We show that DN T cells 

express all the Vß gene families that are used by their SP counterparts, though they dominantly use 

some Vß genes. Analysis of CDR3 length distribution revealed a diverse polyclonal TCR repertoire 

for sorted CD4+ T cells, whereas both DN and CD8+ T cells showed a skewed TCR repertoire with 

oligoclonal expansions throughout most of the Vß families. CDR3 sequencing of matching 

clonotypes revealed a significant sharing of CDR3 sequences from selected Vß-Jß transcripts 

between DN and CD8+ T cells. Altogether, these data strongly argue for a CD8 origin of DN T cells 

in ALPS.  
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Introduction 

The autoimmune lymphoproliferative syndrome (ALPS)3 (also known as Canale-Smith syndrome) 

is one of the first human inherited disorders of apoptosis to be described (1,2). It is a rare disorder 

of disrupted lymphocyte homeostasis caused by an impaired Fas/CD95-mediated apoptosis, 

resulting in chronic lymphoproliferation and a breakdown in immunologic tolerance (3-7). The 

main features of this disease are chronic splenomegaly and lymphadenopathy of early onset, 

hypergammaglobulinemia (IgG and IgA), autoimmune manifestations, and expanded populations of 

T-cell receptor (TCR)-α/ß+ CD3+CD4-CD8- T cells, called double negative T cells (DN T cells) (3-

7). The genetic defect responsible for this syndrome is in most cases a mutation in the Fas gene. 

Fas, a member of the tumor necrosis factor (TNF) receptor superfamily, induces apoptosis of 

lymphocytes when triggered by its ligand (FasL). The interaction between Fas and FasL leads to the 

formation of the death-inducing signaling complex, which initiates a cascade of caspases that 

culminates in apoptosis (8). The Fas apoptotic pathway is crucial for the downregulation of the 

immune response, and loss-of-function mutations in the Fas (TNFRSF6) or FasL gene results in 

chronic lymphoid hyperplasia and autoimmunity, as seen in mice with lpr and gld mutations (9) and 

in patients with ALPS (2). ALPS is classified according to underlying genetic defect (10). In ALPS 

type I, heterozygous Fas mutations (ALPS type Ia) (11,12) or heterozygous FasL mutation (ALPS 

type Ib) (13) are usually associated with a partial defect in apoptosis mediated by Fas and its ligand. 

ALPS type II, which is characterized by resistance to Fas-mediated apoptosis, despite the presence 

of normal Fas and FasL, has been found in patients with caspase-10 mutations (14). Somatic 

heterozygous mutations of Fas were found to cause a sporadic form of ALPS (ALPS type III) by 

allowing lymphoid precursors to resist to normal process of cell death(15).  

 

Lymphoproliferation results from the gradual accumulation of lymphocytes that have not undergone 

normal programmed cell death, and expansion of an unusual population of peripheral DN T cells is 

striking. In the blood, DN T cells constitute less than 1% in normal individuals but can reach up to 
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40% in patients with ALPS (4,16). These DN T cells express αß TCR chains, they exhibit an 

unusual phenotype including expression of the CD45RA isoform (B220) and altered cell surface O-

glycans (16), and they are high producers of IL-10, in contrast to DN T cells from normal 

individuals (17,18). Besides elevated IL-10, ALPS patients exhibit a Th2 cytokine profile that may 

favor autoantibody production (19). The origin of DN T cells remains elusive. They could be either 

previously activated mature T cells that have lost CD8 or CD4 co-receptor expression, or a special 

minor cell lineage selectively expanded owing to defect in Fas signaling. To investigate the 

relationships of DN T cells and the single positive (SP) T cell populations (CD4+ and CD8+), we 

have analyzed the TCR diversity and characterized complementarity determining regions 3 (CDR3) 

of TCR Vß chains in sorted DN and SP CD4+ and SP CD8+ T cells in patients with ALPS type 1a.  

 

 



 5

Materials and methods 

Patients and samples 

Blood samples were obtained from three patients with ALPS type Ia. All patients, or their parents, 

provided written informed consent, validated by the Ethics Committee (Comité Consultatif pour la 

Protection des Personnes en Recherche Biomédicale) from the Necker Hospital. Table 1 

summarizes the clinical features of the patients. 

 

Flow cytometry and sorting of double-negative T cells 

Peripheral blood mononuclear cells (PBMC) were isolated from freshly drawn heparin-treated 

blood by means of Ficoll-hypaque density gradient centrifugation. The proportion of DN T cells 

was determined by flow cytometry on PBMC following staining with monoclonal antibodies (CD3-

APC, CD4-PE, CD8-FITC and TCRαß) purchased from Becton Dickinson. DN T cells (CD4-CD8-

CD3+TCRαß+) were identified as shown in Fig. 1A. Sorting of DN T CD3+CD4-CD8- cells from the 

three patients was performed with a FACSstar with 98% purity. Sorted DN T cells therefore contain 

a majority of αβT cells. Possible presence of γδ T cells within sorted DN T cells does not skew the 

data since repertoire analyses were performed with Vß-specific primers.  

Determination of Vß gene usage and Immunoscope analysis 

Determination of Vß gene usage and Immunoscope analysis was performed as described in A. Lim 

et al. (20). Briefly, total RNA was extracted using the RNeasy mini-kit (Qiagen, Courtaboeuf, 

France) according to the manufacturers specifications. cDNA was then prepared by RNA reverse-

transcription with 0.5µg/µl oligo (dT)17 and 200 U of Superscript II reverse transcriptase 

(Invitrogen, Cergy Pontoise, France). An aliquot of cDNA synthesis reaction was amplified with 

each of the 24 TCR Vβ family-specific primers, together with a TCR Cβ primer and a Minor 

Groove Binder (MGB)–TaqMan probe (Applied Biosystems). Real-time quantitative PCR was 

carried out in an ABI7300 device (Applied Biosystems, Foster City, CA). In a second approach, 

two microliters of each of these amplification reactions were used as template in run-off reactions 
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using a nested fluorescent primer specific for the Cß segment. In this reaction, all PCR products 

were copied into fluorescently labeled single-stranded DNA fragments, irrespective of their TCR Jβ 

usage or CDR3 sequence. These fluorescent products were separated on an ABI-PRISM 3730 DNA 

analyzer (Applied Biosystems). The size and intensity of each band were analyzed with 

Immunoscope software (21,22). Fluorescence intensity was plotted in arbitrary units on the y-axis, 

whereas the x-axis corresponds to CDR3 length in amino acids. The Gaussian distribution of the 

different CDR3 lengths is characteristic of normal Vß repertoire. 

 

DNA cloning and sequencing analysis of TCR transcripts 

Vß/Cß PCR were carried out on cDNA with 5 U Pfu polymerase (Stratagene) for 25 cycles. PCR 

products were then cloned in pCR®4Blunt-TOPO vector (Invitrogen Life Technologies). For 

sequencing purposes, PCR was carried out directly on LacZ- colonies with Taq polymerase 

(Promega, Madison, MI) (23). Sequencing was carried out with the Big Dye Terminator Reaction 

Kit (Applied Biosystem) and analyzed on an ABI PRISM 3730 DNA Analyzer.   
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Results 

Clinical Features 

Demographic and clinical features of the study patients are shown in Table 1. Patients presented 

with ALPS, characterized by a lymphoproliferative syndrome consisting in massive splenomegaly 

(splenectomy was performed at age 12 years in P1 because of hypersplenism), and 

lymphadenopathy consisting in multiple lymph nodes sometimes larger than 2 cm (P1). 

Autoimmune manifestations, were detected in P1 and P3, consisting in urticarial rash and arthralgia 

in P1, uveitis, glomerulopathy and autoimmune thrombocytopenia in P3. Hypergammaglobulinemia 

was found in all three patients, associated with hyper IgA in P1 and P3, and normal or low (P3) 

serum IgM level. This was associated with a heterozygous mutation in the Fas gene, and a defect in 

anti-CD95 monoclonal antibody induced-apoptosis, as previously described for such patients (12). 

In all cases, an elevated proportion of TCRaß+/CD4-/CD8- DN T cells was detected in peripheral 

blood, the size of this population varying from one patient to another (Table 1) (12).  

 

Purification and immunophenotypic characteristics of DN T cells in ALPS patients 

The proportion of DN T cells in the study patients ranged from 4.4% to 17.2% of peripheral blood 

a/ß T cells (Fig. 1A). SP and DN T cells were purified from patients’ PBMC by positive selection of 

CD3+ T cells with magnetic beads, followed by FACS sorting of three subsets: CD3+CD4+ SP, 

CD3+CD8+ SP, CD3+CD4-CD8- DN T cells. DN T cells from these patients exhibited the phenotype 

of mature “end stage” cells i.e. TCRhigh, CD2+, CD5+, CD27++, CD28+, CD45RA+RO- CD31+, 

CD62Ldull, CXCR-5-, CD57+, CD11b (data not shown). Furthermore, analysis of the cytotoxic 

granule content showed that ex vivo DN T-cells from ALPS patients were mostly GrzA positive (for 

example 90.2% for P2) while GrzB was barely detected (Fig. 1B, 1C). In contrast, CD8
+ 

T-cells 

from the same individual significantly over-expressed GrzA and GrzB, as compared to control, and 

granzymes were detected in CD4
+ 

lymphocytes too (Fig. 1B, 1C). These data suggest that DN T 

cells are unable to exert a cytolytic granule-dependent activity. In addition, as it was demonstrated 

recently (24), cytotoxic granules-dependent cell-death in SP T cells may compensate for Fas-
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deficiency in ALPS. 

 

The TCR Vβ-gene usage of α/ß DN T cells from ALPS patients quantitatively differs from that of SP 

cells 

The expression of 24 Vß gene families was examined by RT-PCR amplification of cDNA derived 

from sorted subpopulations. Representative data are shown for a control donor (Fig. 2A) and three 

patients (Fig. 3). Qualitatively, repertoire diversity was conserved in all three subsets from ALPS 

patients, and in particular DN T cells expressed all Vß-gene families that were used by CD4+ and 

CD8+ SP cells (Fig. 3). However, quantitative differences in the expression of several Vßs were 

apparent in each of the three patients, with preferential expression of some Vßs by DN T cells. For 

example, Vß2 and Vß7 families were preferentially expressed in DN T cells from P1 (Vß2: 25% in 

DN T cells vs 12% and 8% in SP CD8 and CD4 SP T cells respectively; Vß7: 30% in DN T cells vs 

12.1% and 2.5% in SP CD8 and CD4 SP T cells respectively). Similarly, a preferential usage of 

Vß17 and Vß7 genes was found in DN T cells from P2 and P3 respectively (Fig. 3). 

 

CD8 SP and DN T cells from ALPS patients express a skewed TCR Vß repertoire, in contrast to 

CD4 T cells 

Analysis of CDR3 length distribution in sorted CD4 T cells from ALPS patients showed for all Vß-

Cß rearrangements Gaussian Immunoscope profiles (representative profiles are shown in Fig. 4), 

which is the hallmark of a polyclonal T cell repertoire observed in control donors (Fig. 2) (20). In 

sharp contrast, SP CD8 T cells from ALPS patients displayed skewed Immunoscope profiles with 

oligoclonal expansions for some Vß families (Fig. 4), such as Vß2, Vß8, Vß13a, Vß14, Vß17, 

Vß18, and Vß20 for P1, Vß1, Vß2, Vß5, Vß8, Vß13b, Vß17, Vß22, for P2, and Vß1 and Vß13b for 

P3 (Fig. 4). This restricted diversity was not observed in sorted SP CD8 T cells from healthy donors 

(Fig. 2), as previously reported (20). DN T cells from ALPS patients displayed highly limited 

clonality with characteristic clonotypes for some Vß families (eg Vß2, Vß7, Vß13a, Vß13b, Vß14, 

Vß20 for P1, Vß1, Vß5 and Vß22 for P2) while others showed more diverse patterns with specific 
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T cell expansions (for example Vß1, Vß21, Vß22 and Vß23 for P1, Vß2, Vß8, Vß13a, Vß22 for P2, 

Vß1, Vß13b, Vß14, Vß18 for P3 (Fig. 4). Oligoclonality of both CD8 SP and DN T cells was 

confirmed by sequence analysis selecting within Vß families matching clonotypes that had the same 

CDR3 length in TCR transcripts from CD8 SP and DN T cells (as exemplified for patient 2 in Fig. 

5). Table 2 indicates the frequency of unique in-frame CDR3 sequences within the total analyzed 

selected Vß TCR clonotypes from CD4 SP, CD8 SP and DN T cells from the three patients. In DN 

T cells from P1, as few as 14 unique CDR3 sequences out of 88 Vß2 TCR, 10 out of 72 Vß14 TCR, 

39 out of 230 Vß18 TCR and 36 out of 233 Vß23 TCR were identified. A total of 682 CDR3 

sequences were generated from selected transcripts, among which only 124 were unique (18%), 

confirming Vß gene skewing among DN T cells. In contrast, paired CD4 SP T cells revealed 

polyclonal frequency of CDR3 sequences with almost no repeat (66 unique CDR3 sequences out of 

75 Vß2 TCR and 78 out of 80 Vß8 TCR), as found on a total of 155 CDR3 sequences among which 

144 were unique (93%) (Table 2). Oligoclonality of SP CD8 T cells suggested by Immunoscope 

profiles was confirmed by sequence analysis, the frequency of unique CDR3 sequences being 

intermediate between SP CD4 and DN T cells, 34 unique CDR3 sequences out of 80 Vß2 TCR, 21 

out of 84 Vß14 TCR, 94 out of 196 Vß18 TCR and 103 out of 216 Vß23 TCR. Overall, a total of 

631 CDR3 sequences were generated from selected transcripts, among which 275 were unique 

(44%). A similar skewed oligoclonal frequency of CDR3 sequences was found in patients 2 and 3 

DN T cells (Table 2). 

 

CDR3 sequence analysis of TCR transcripts containing common clonotypes in DN T and SP CD8 T 

cells 

To address whether DN T cells may originate from SP CD8 T cells, we identified dominant 

clonotypes in DN T cells and selected clonotypes with similar CDR3 size in SP CD8 T cells for 

sequence analysis (e.g. Vß7 in P2, Fig. 5). Selected TCR transcripts of common clonotypes were 

cloned and the resulting DNA clones were subsequently analyzed for CDR3 sequences using 

corresponding Vß and Jß primers. Fig. 6 shows that for each selected clonotype, CDR3 sequences 
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were detected at very high frequency in DN T cells, consistent with the oligoclonality of the Vß 

repertoire. For example, the Vß7 clonotype in P2 included two major CDR3 sequences, 

SLRQGLSTEA and SQGTGGNQPQ (76% and 6.4% of total analyzed sequences respectively). 

Importantly, both CDR3 sequences were also detected in SP CD8 T cells, but with a much lower 

frequency (4.8% and 0.4% of total analyzed sequences respectively) (Fig. 6). Similarly, the Vß13 

clonotype in P3 was dominated by an 11aa CDR3 sequence (SSDSGGSYNEQ), which represented 

53% of the clones in that gene family. This CDR3 sequence was also detected in SP CD8 T cells, 

though at a lower frequency, as expected. In P1, The 9 aa CDR3 sequence RPGLPNPEA was 

detected both in DN and SP CD8 T cells. Overall, the Immunoscope analysis and CDR3 sequencing 

experiments argue for the hypothesis that DN T cells from ALPS patients may represent, at least in 

part, originally SP CD8 T cells that down-modulated the co-receptor CD8. In addition, the extent of 

oligoclonality together with phenotypic features of DN T cells suggest recent antigenic activation 

by a limited set of antigens, possibly self antigens. 
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Discussion  

The expansion of α/ß-DN T cells in peripheral blood of ALPS patients is a consistent feature of this 

disease, and part of the diagnostic criteria of ALPS (1,10). DN T cell expansion is also evident 

histologically in secondary lymphoid organs, particularly in the paracortical areas of lymph nodes, 

where they accumulate and express markers of activated T cells, i.e. ki67+, CD45R0-CD45RA+ 

(25). Lymphoproliferation in ALPS is associated with chronic generalized activation, as 

demonstrated by upregulation of HLA-DR expression on peripheral CD3 T cells as well as high 

levels of activation markers such as soluble interleukine-2 receptor, soluble CD30 and IL10 in sera 

of ALPS patients (7,26,27). Consistent with their unregulated peripheral proliferation and possible 

recognition of self antigens, DN T cells exhibit the phenotype of mature antigen-experienced 

cytotoxic T cells, i.e. TCRhigh, CD2+, CD5+, CD27++, CD28+, CD45RA+RO- CD31+, CD62Ldull, 

CXCR-5-, CD57+, CD11b16. The uniform phenotype of a/ß-DN T cells from ALPS patients is 

similar to a/ß-DN T cells from mice with defective Fas (lpr) (7,16,28) and different from the minor 

a/ß-DN T cell compartment in healthy subjects that contains multiple subpopulations (29,30). To 

investigate the origin of DN T cells from ALPS patients, we analyzed with Immunoscope 

technology the TCR Vß repertoire diversity of sorted DN T cells and SP CD4 and CD8 T cells, and 

we performed sequence analyses of the CDR3 region within Vß families showing, on Immunoscope 

profiles, common clonotypes between DN and SP T cells. This study shows for the first time that 

DN T cells from ALPS patients share with CD8 T cells unique CDR3 sequences across several 

TCR Vß families, arguing for the CD8 origin of DN T cells.  

 

Vß gene family usage was examined by quantitative RT-PCR amplification of cDNA derived from 

sorted DN and SP T cells. Though the Vß-gene usage of DN T cells did not dramatically differ from 

that of SP T cells in ALPS patients – i.e. DN T cells expressed all the Vß gene families that were 

used by the SP counterparts, preferential expression of some Vß was found in DN T cells as 

compared to autologous SP T cells. However, Vß usage skewing in DN T cells varied from one 

patient to the other. Analysis of CDR3 length distribution revealed dramatic differences between all 
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three subsets. A Gaussian distribution of CDR3 peaks for all Vß-Cß rearrangements, the hallmark 

of a polyclonal TCR repertoire, was obtained in sorted SP CD4 T cells from the ALPS patients. In 

contrast, DN and SP CD8 T cells displayed skewed TCR-Vß Immunoscope profiles, with 

oligoclonal or monoclonal expansions throughout most of the Vß families, indicating a contracted 

TCR-Vβ repertoire. Oligoclonality of both SP CD8 and DN T cells was confirmed by sequence 

analysis selecting, within Vß families, matching clonotypes that had the same CDR3 length in TCR 

transcripts. For example, in DN T cells from P1, a total of 682 CDR3 sequences were generated 

from selected transcripts, among which only 18% were unique, in contrast to SP CD4 T cells that 

showed 93% of unique CDR3 sequences. The frequency of unique CDR3 sequences was 

intermediate (44%) in SP CD8 T cells from P1. Similar data were found for patients 2 and 3. That 

expanded DN T cells originate from SP CD8 T cells is suggested by several instances of shared 

CDR3 sequences from selected Vß-Jß transcripts. For example, the Vß7 clonotype in DN T cells 

from P2 was dominated by two major CDR3 sequences (SLRQGLSTEA and SQGTGGNQPQ) that 

were both detected in SP CD8 T cells. We report similar findings for Vß13 clonotype in P3, or Vß 

23 clonotype in P1. Interestingly, CDR3 sequences that are shared between DN and CD8 T cells 

could not be detected in CD4 T cells. Therefore, from this study, we conclude that DN T cells from 

ALPS patients are oligoclonally expanded, and they originate from SP CD8 T cells, as suggested by 

shared Vß CDR3 sequences within several Vß families. Differences in Vß gene usage by DN as 

compared to CD8 T cells suggest that the former originate from the expansion of a minor CD8 

subset. Overall, this conclusion differs from the one proposed in a recent study, focusing on CDR3 

spectratyping profiles of sorted DN and SP T cells from a single ALPS patient. The authors 

concluded that DN are not clonally related to SP T cells because of the lack of CDR3 size matching 

of the oligoclonal expansions detected on spectratype profiles from the three subsets (31). However, 

the lack of CDR3 sequence analysis in this study precludes any valid conclusion on the origin of 

DN T cells. 

 

The accumulation of DN T cells in murine models of ALPS, i.e. mice lacking expression of Fas 
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(lpr) or Fas-ligand (gld), suggests that this subset might represent a subpopulation destined for 

apoptosis in normal mice (9). It would arise from high affinity interactions of TCR with 

peptide/MHC, and would accumulate to vast numbers in the absence of Fas-induced apoptosis (32). 

The SP T cell origin of DN T cells has been suggested by several findings, including their bearing 

of a demethylated CD8 gene (33,34), and their absence in mice lacking expression of class I MHC 

(35). In ALPS patients, the homogenous phenotype of DN T cells, that characterizes mature 

antigen-experienced cytotoxic T cells, suggest their CD8 T cell origin (16). Interestingly, the 

peculiar expression pattern of cytolytic proteins by DN T cells makes them unable to exert a 

cytolytic granule-dependent activity. Indeed, they strongly express granzyme A, whereas granzyme 

B and perforin are barely detected, as opposed to granule expression in SP T cells (24) (and this 

study). As recently discussed (24) the repressor mechanism that down-regulates expression of 

granzyme B and perforin while sparing granzyme A in DN T cells may involve IL-10 [highly 

produced by DN T-cells (17,36)] previously shown to repress granzyme B mRNA expression in 

cytotoxic lymphocytes (37). This repressor mechanism could be involved in the modulation of the 

CD4 or CD8 co-receptors (38). 

 

The mechanisms involved in peripheral expansion of DN T cells in ALPS patients are not fully 

understood. Holzelova et al. have shown that resistance to Fas-mediated apoptosis would confer a 

selective advantage to mutant cells, leading to their accumulation and evolution towards the 

phenotype of DN T cells (15). The recent observation that in vivo triggering of mitochondrial 

apoptosis by rapamycin in murine ALPS induces a dramatic decrease in DN T cells (39) supports 

this hypothesis. The lack of co-receptors in DN T cells from ALPS patients may also contribute to 

their accumulation. Indeed, it has been reported in a TCR transgenic murine model that co-receptor 

engagement controls expansion of normal T cells, and in the absence of co-receptor T cells survive 

chronic stimulation and express B220, as seen in ALPS disease (40). In the present study, DN T 

cells appeared to be oligoclonally expanded, as evidenced by CDR3 length distribution. This extent 

of oligoclonality together with phenotypic features suggesting historical antigen encounter and 
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recent activation of large proportions of these cells may reflect stimulation of DN T cells by a 

limited yet ubiquitous set of antigens. The antigen specificities recognized by the TCR of DN T 

cells have not been defined, but the general assumption is that they will include self-antigens. 

Interestingly, this study shows for the first time that CD8 T cells from ALPS patients (children and 

young adults) exhibit a restricted TCR diversity, with oligoclonal and monoclonal expansions 

throughout most of the Vß families, and redundant CDR3 sequences. This is reminiscent of 

repertoire contraction and oligoclonal expansions seen in aged individuals, and supposed to be a 

heterogeneous phenomenon including impaired homeostasis and antigen-driven stimulation (41). 

The conserved CDR3 sequences between CD8 T cells and DN T cells reported here suggest that 

they may recognize identical peptide sequences, and argue for their filiation. It has been proposed 

that the defect in killing of lpr CD8 T cells following stimulation by self-antigen, would lead to the 

modulation of CD8 co-receptor and accumulation as IL-10 secreting anergic cells (42,43). The 

comparative molecular analysis of CDR3 distribution and sequencing of CD8 T cells and DN T 

cells in the present study extends for the first time this hypothesis to the human disease. 
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Figure legend  

Figure 1. FACS analysis of cytotoxic granule content of peripheral T cells in control and ALPS 

patients. Freshly drawn heparinized peripheral blood samples were stained for TCRαß, CD3, CD4 

and CD8 expression. Cells were next stained for GrzA, GrzB and perforin content.  

A: surface CD4 and CD8 co-expression on gated TCRαß+ CD3+ T cells from a control donor and 

the three ALPS patients. The percentage of cells within each quadrant among gated cells is 

indicated.  

B: Intracellular GrzA and GrzB content in gated CD3+CD4+, CD3+CD8+, and CD3+CD4-CD8-DN T 

cells from a control donor and P2. C: Intracellular perforin and GrzB content in gated CD3+CD4+, 

CD3+CD8+, and CD3+CD4-CD8-DN T cells from a control donor and P2. 

 

Figure 2. Quantitative Vß repertoire analysis and Immunoscope profiles of SP T cells from a 

control donor.  

A: Quantitative Vß repertoire was determined by real-time PCR analysis on sorted CD4+ and CD8+ 

T cells from a representative healthy donor. The x axis indicates Vß families and the y axis their 

relative frequency of usage.  

B: Immunoscope profiles of TCR Vß analysis on the same sorted SP T cells. Profiles for the 24 Vß 

families are shown. The x-axis indicates CDR3 length (amino-acid), and the y-axis displays 

arbitrary fluorescence intensity of the run-off products 

 

Figure 3. Quantitative Vß repertoire analysis on SP and DN T cells from ALPS patients. 

Quantitative Vß repertoire was determined by real-time PCR analysis on sorted SP CD4+ and CD8+ 

T cells, and DN T cells from the three ALPS patients. The x axis indicates Vß families and the y 

axis their relative frequency of usage. Arrows point out the expansion of some Vß families detected 

in DN T cells as compared to SP T cells from the same individual. 
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Figure 4. Immunoscope profiles of TCR Vß analysis of SP and DN T cells from ALPS patients. The 

diversity of TCRVß repertoire from sorted SP and DN T cells from ALPS patients was analyzed 

and Immunoscope profiles are shown. The x-axis indicates CDR3 length (amino-acid), and the y-

axis displays arbitrary fluorescence intensity of the run-off products. Immunoscope profiles of CD4 

T cells are Gaussian for all Vß families, indicative of a diverse repertoire, as observed in control 

donors (Fig. 2). Immunoscope profiles of CD8+ and DN T cells are oligoclonal in most of the Vß 

families, indicative of a skewed restricted repertoire. Vß families targeted for further CDR3 

sequence analysis are pointed out with a star.  

Figure 5. Oligoclonality of both CD8+ T cells and DN T cells for indicated Vß families confirmed 

by sequence analysis, as shown in the upper part of the figure for each cell subset. For a given Vß, 

the number of sequences obtained for each CDR3 length was representative of the Immunoscope 

profile described in Fig. 4. Identification of matching clonotypes with same CDR3 length in TCR 

transcripts from CD8 SP and DN T cells from ALPS P2 was performed within Vß1, 5, 7, 17, 20 24 

families, as shown by the hatched lines.  

 

Figure 6. CDR3 sequence analysis of selected TCR Vß transcripts of dominant clonotypes between 

CD8+ T cells and DN T cells. Selected TCR transcripts were cloned and the resulting DNA clones 

were subsequently analyzed for CDR3 sequences using corresponding Vß and Jß primers. For each 

selected clonotype, the frequency of CDR3 sequences in DN and SP CD8+ T cells is indicated. 

 

 

 

 

 



 

Table 1 :  Patients’ clinical and immunological characteristics 

 
Serum Ig‡‡ Lymphocyte subsets¶ (%) 

Patient 

No 

Fas 

Mutation 

Sex/

Age 

(yrs) 

Age at 

presentat 

(yrs) 

LA*
Spl† 

Splenectomy 

Age (yrs) 
AI‡ 

IgG IgA IgM 

Lympho¶ 

(x103/ml) 
CD3 CD4 CD8 DNT CD19 

CD16+ 

CD56+ 

1 
 

 
K280fs M/32 6 ++ +++ + (12) UR, Ar 

 -> 

N 

 -> 

N N 2728 66 40 19 6 4 24 

 

2 
 

 

S214fs M/10 0.3 + +++ - 0  N N 3 400 90 24 41 20 7 2 

3 

 

S227fs F/22 4 + ++ - Uv, G,T  

 

 

 

 

 

1600 

 

80 

 

25 

 

27 

 

12 

 

12 

 

na 

 

 

*LA :Lymph-Adenopathy + : multiple nodes, size <2 cm, ++ : multiple nodes 2 cm <size < 5cm;  †Spl : Splenomegaly + : above umbilicus,, ++ : below 

umbilicus, +++ : palpable in iliac fossa ; ‡AI : Auto Immunity 0 : absence of autoimmune manifestation ; UR : Urticarial Rash ; Ar : Arthralgia; Uv : Uveitis; 

G : Glomerulopathy; T : Thrombocytopenia; ‡‡Serum Immunoglobulin level: N: within the normal range,  : > +2SD <+4SD,  :> +4SD ; ¶ Lymphocyte 

counts in controls are 2000-4000 x103/ml, with 70-80% CD3+ cells, 40-50% CD4+ cells, 20-30% CD8+ cells, 10-20% CD19+ cells and 10-20% of 

CD16+CD56+ cells. ** DN T cells : % CD4-CD8- among TCR α/β Τ cells (normal limit : 2%); na : not available 

 















 

 

Table 2 : Frequency of unique CDR3 sequences 
 
       Frequency 
 
Donor Cells  Vß2  Vß8  Vß14  Vß18   Vß23   Total 
 
P1 DN  14/88 (16%) 25/59 (42%) 10/72 (14%) 39/230 (17%)  36/233 (16%)  124/682 (18%) 
 CD8+  34/80 (42%) 23/55 (42%) 21/84 (25%) 94/196 (48%)  103/216 (48%) 275/631 (44%) 
 CD4+  66/75 (88%) 78/80 (97.5%)         144/155 (93%) 
 
 
   Vß1  Vß5  Vß7   Vß17  Vß20   Vß24   Total 
 
P2 DN  40/42 (95%) 44/57 (77%) 25/186 (13%)  87/230 (38%) 43/75 (57%)  29/55 (53%)  268/645 (41%) 
 CD8+  45/73 (62%) 9/13 (69%) 152/247 (61%) 91/142 (64%) 50/89 (56%)  66/86 (77%)  413/650 (63%) 
 
 
   Vß5  Vß13a   Vß13b   Total 
 
P3 DN  45/94 (48%) 62/156 (40%)  56/102 (55%)  163/352 (46%) 
 CD8+  57/69 (83%) 132/148 (89%) 35/64 (55%)  224/281 (79%)  
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