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Abstract

Notch signaling is a highly conserved pathway involved in cell fate choice during development with Delta and Jagged constituting the two
evolutionary conserved families of Notch ligands. These ligands are transmembrane proteins with conserved biochemical structure that share
their receptors and signal through a common mechanism. Upon ligand binding Notch receptors are proteoliticaly cleaved, the intracellular
domain of Notch (NICD) is released and translocated to the nucleus, where it activates target genes. In mammals, four receptors and five
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ligands have been described. Delta-1, Delta-3 and Delta-4 are homologues toDrosophila Delta and Jagged-1 and Jagged-2 toDrosophila
Serrate. Despite strong domain homology, there is growing evidence that signals transmitted through Delta or Jagged ligands can dif
affect the target cell. At least during embryonic development, Notch receptors and Notch ligands functions cannot be compensate
members. Knock-out mice for Notch-1, Notch-2, Delta-1 and Jagged-1 are embryonic lethal[Swiatek PJ, Lindsell CE, del Amo FF, Weinmaste
G, Gridley T. Notch1 is essential for post-implantation development in mice. Genes Dev 1994;8:707–19; Shimizu K, Chiba S, Kum
Hosoya N, Takahashi T, Kanda Y, Hamada Y, Yazaki Y, Hirai H. Mouse jagged1 physically interacts with notch2 and other notch re
Assessment by quantitative methods. J Biol Chem 1999;274:32961–9; Hrabe de Angelis M, McIntyre 2nd J, Gossler A. Maintenance
borders in mice requires the Delta homologue DII1. Nature 1997;386:717–21; Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, H
Gendron-Maguire M, Rand EB, Weinmaster G, Gridley T. Embryonic lethality and vascular defects in mice lacking the Notch ligand J
Hum Mol Genet 1999;8:723–30]. Similarly, mice heterozygous for Delta-4 inactivation also die before birth[Gale NW, Dominguez MG,
Noguera I, Pan L, Hughes V, Valenzuela DM, Murphy AJ, Adams NC, Lin HC, Holash J, Thurston, G, Yancopoulos, GD. Haploinsuffi
of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad S
2004;101:15949–54]. Invalidation of Jagged-2 results in defaults in thymus morphology and�� development[Jiang R, Lan Y, Chapman HD,
Shawber C, Norton CR, Serreze DV, Weinmaster G and Gridley T. Defects in limb, craniofacial and thymic development in Jagged
mice. Genes Dev 1998;12:1046–57]. Altogether, these data suggest that each Notch member can exert unique specific effects.

In this review, we will thus focus on recent data about differential effects of Notch ligands on T cell development and differentia
light of recent biochemical and molecular advances on Notch-signaling pathway, we will examine how specific effects can be medi
given ligand.
© 2005 Elsevier B.V. All rights reserved.
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1. Specific effects exerted by Notch ligands

Notch receptors and ligands are expressed in developing
and mature lymphocytes and in lymphoid tissues (see§ 3).
This pattern of expression suggests a role in both lymphocytes
development and peripheral maturation. The role of Notch
signaling in early B and T lymphocyte development has been
extensively studied[7,8], while its influence on mature T
cell function only recently emerged (review in Ref.[9]). It
was recently shown that each ligand of Delta and Jagged
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substitute Delta-1 and support T cell development. Indeed,
Delta-4 over expression was tested both in vitro in OP-9 cell
line[13] and in vivo in absence of thymus[12] and was shown
to induce T cell commitment.

Using the OP-9 cell line Lehar et al. compared Delta-1
and Jagged-1 effects on murine BM-derived hematopoietic
stem cells and thymus precursors at the DN1 stage[14]. They
showed that the majority of BM-derived stem cells do not
respond to Jagged-1 signal, similarly to human cells[10],
whereas only the Delta-1-expressing stroma cells promote
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mily could exert specific effects on T cell development and
aturation. Indeed, Delta-1 ligand has been involved in T cell
evelopment, whereas Jagged-1 has been mostly described
r its influence on peripheral T cell differentiation.

.1. Notch ligands and T cell development

To better evaluate the contribution of each ligand in lym-
hocyte development, a series of experiments were per-
rmed comparing directly the Delta and Jagged effects.
sing the stroma cell line S17 over expressing human Delta-
or human Jagged-1 on human CD34+ hematopoietic stem

the proliferation and maturation of T cells progenitors[11].
They also showed that T cell progenitors at the DN1 a
DN3 stages respond to Jagged-1 by differentiating along
NK and �� cell lineages[14]. A role of Jagged ligands in
�� development has been already suggested since Jagg
deficient mice exhibit a decrease in�� T cell lineage differen-
tiation[6]. Concerning NK cells development, it was recent
shown that OP-9 cell line over expressing Jagged-2 stimula
the development of NK cells from BM-derived HSC[15]. In
this concern, we have reconstituted the immune system
normal mice with fetal liver cells over expressing Jagged
or Jagged-2, but we failed to observe any differences w
ells, Jaleco et al. have shown that Delta-1 allows the emer-
ence of cells with characteristics of T/NK precursors, while
agged-1 did not apparently interfere with lymphoid devel-
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control mice (de La Coste, unpublished data).

1.2. Delta ligands and lymphocytes maturation
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Others and we have more recently shown that Delta
nds are involved in peripheral T cell maturation and

heir functions are not redundant. In absence of a thy
e showed that mature CD4+ T cells developed in the pre
nce of Delta-1 or Delta-4 show unique patterns of cyto
roduction after in vitro stimulation[12]. We showed tha
D4+ T cells developed in presence of Delta-1 only p
uced IFN�, whereas CD4+ T cells developed in presence
elta-4 produce IFN-�, IL-4 and IL-5. These observatio
uggest that Delta-1 is associated with Th1 polarization w
elta-4 induced a mixed Th1–Th2 phenotype. A similar
olarization has been obtained in vitro using a soluble
f Delta-1 on TCR-activated T cells[16]. However, Amse
t al. found that Delta ligands promote Th1 differentia
sing co-culture of näıve transgenic CD4+ T cells with APCs
opment from hematopoietic progenitors[10]. Later on, using
the M-CSF-deficient BM stroma-derived cell line OP-9,
was shown that over expressing of the Notch ligand Delt
can induce full T cell differentiation in vitro[11]. The ectopic
expression of Delta-1 inhibits B cell maturation but susta
�� and�� T cell differentiation[11]. In this study, only CD8+

T cells can be obtained, probably, because of the absenc
MHC class-II molecules expression by OP-9 cells. We ha
shown using nude mice that in absence of thymus, both De
1 or Delta-4 over expression is sufficient to induce T ce
development in vivo[12]. Thus, Delta ligands provide a sig
nal sufficient for the induction of T cell lineage commitme
even in absence of thymus[11,12]. In apparent contrast, i
was shown that the absence of Delta-1 do not affect T
development in mice[13], however, in absence of Delta-1
another ligand expressed in the thymus, i.e. Delta-4, co
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expressing Notch ligands, while Jagged-1 promotes Th2 dif-
ferentiation[17]. These apparent discrepancies may be due
to the different experimental system used. Nevertheless, in
the Amsen study, Delta-4 expression was correlated with the
ability of LPS to promote Th1 response and only the Delta-1
effects have been directly tested by over expression approach.
It is, therefore, possible that the enforced expression of Delta-
4 leads to different pattern of cytokines expression when
compared with Delta-1[17].

By over expressing Delta-1 and Delta-4 during lymphoid
development, we also observed that Delta-4- or Delta-1-
induced T cell development is associated with a significant
increase in the number of ectopic developing DP T cells[12].
However, in mice over expressing Delta-4, we detected a
marked increase in the number of peripheral DP cells (espe-
cially, in LNs), which was never observed in Delta-1 mice.
Other groups[18] previously described the development of
a lymphoproliferative disease associated with Delta-4 over
expression[19]. In one study, the DP ectopic cells were not
transplantable into secondary recipients suggesting that the
observed phenotype was more likely due to lymphocyte pro-
liferation rather than a neoplastic transformation-lymphoma
[18]. In the second study, DP T cells were injected into recipi-
ent mice and lead to the development of acute lymphoma[19].
The proliferative disease described by Dorsh and co-workers
was often lethal, resembling a pre-oncogenic situation, which
w
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of antigen induce naı̈ve CD4+ T cells to become regulatory
T cells and these T cells can induce tolerance in naı̈ve mice
[25]. It has also been shown that allo-antigen-presenting cells
over expressing Jagged-1 when co-cultured with naı̈ve T cells
induce a decrease in IFN� production, IL-2 and IL-5, con-
sistent with induction of a regulatory phenotype[26]. This
mechanism of antigen-specific tolerance induction mediated
through activation of T cells by Jagged over expressing APCs
is also occurring in human T cells. Epstein-Barr virus positive
APCs over expressing Jagged-1 co-culture with autologous
human T cells can induce antigen-specific regulatory T cells
and modify immune response to viral antigens[27]. Trans-
genic mice over expressing an activated form of Notch-3 in
thymocytes and T cells[20] contain a significantly increased
population of CD4+ CD25+ T cells in thymus and spleen
[28]. These cells were tested for regulatory functions and
the authors showed that these transgenic mice are protected
against induced-autoimmune diabetes[28]. These results
support the idea of a central role for Notch pathway, possibly
via Notch-3 and Jagged-1 interaction in sustaining regulatory
T cells differentiation and function. In contrast to its periph-
eral effects, the role of Jagged ligands on hematopoietic
stem cell self-renewal and differentiation is still controver-
sial [29–33].

From all these data, it appears that Delta ligands are
involved in T and B lymphocytes commitment and on T lym-
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ndings suggest that Delta-1 and Delta-4 ligands either
he same receptor(s) with different affinities or bind dist
otch receptors. Development of T lymphomas was
escribed in transgenic mice over expressing an acti

orm of Notch-3[20], whereas retroviral over expression
otch-1 was not associated with lymphoproliferative di
er [21,22]. Thus, these results suggest that T cell deve
ent induced by Delta-1 or Delta-4 in vivo is not equival
Concerning peripheral CD8+ T cells, we found that bot

elta-1 and Delta-4 promote IFN� production[12], there-
ore, confirming previous data showing that blocking
otch inhibits IFN� production by CD8+ T cells[23]. Differ-
nt results have been obtained in a model of organ trans

ation[24]. In this study, the authors showed that pretreatm
f spleen CD8+ T cells with cells expressing Delta-1 liga

n presence of allo-antigen is able to inhibit the respons
ubsequent exposure to the same antigen[24]. This mech
nism, which can result in graft survival, was shown
e CD8+ T cells-dependant. Such CD8+ responder T cell
xhibit an altered cytokine production resulting in a decre
FN� production and an enhanced IL-10 expres
24].

.3. Jagged ligands

The role of Jagged ligands on peripheral T cell fu
ion has been first suggested by in vitro data from Ho
t al. [25]. Hoyne et al. have shown that murine-antig
resenting cells over expressing human Jagged-1 in pre
hocyte peripheral maturation, while Jagged ligands are
ften involved in�� and NK lymphocytes development a
eripheral T cell differentiation. Overall, these data ra
n intriguing question, how can the combination of No
eceptors with distinct ligands underlay so diverse biolog
utcomes of Notch-signaling pathway?

Notch ligands share a conserved extra-cellular dom
ontaining multiple EGF repeats and a Delta–Serrate–
DSL) motif that is required for receptor binding. Jagged
eins possess a distinct cystein-rich region proximal to
ransmembrane domain and which it is not present in D
igands (for review, see Ref.[34]). This structural differenc
an constitute one explanation for Delta and Jagged dis
iological functions. However, this is not sufficient to expl
ow different ligand–receptor combinations can trigger

inct downstream events. The intracellular side of No
igands is variable among the homologs both in seque
nd length[34]. Interestingly, it was observed that the c
erved DSL motif, shared by all Notch ligands and invol

n Notch–Notch ligand interactions is not functionally int
hangeable[35]. Thus, the DSL motif alone is not capable
ransmit a specific signal and the whole ligand sequen
ecessary to generate a specific signal by a given ligand

erent features now emerge that might help to understand
an diverse outcomes be induced by the same set of rec
nd ligands molecules. Notch signaling can possibly be
lated at three different levels, the Notch receptor itself
otch ligand or Notch–Notch ligand interaction. Regula
nd modulation can occur at different steps of Notch sig

ng. We will now discuss about various – but not all – asp
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of Notch-signaling regulation and modulation that can help
to understand how specific outputs can be induce by distinct
ligands.

2. Expression of Notch receptors and ligands

In mammals, the presence of four Notch receptor and five
ligands increases the possibility of different combinations of
receptor–ligand binding. However, the four Notch receptors
and five ligands are differentially expressed and tightly regu-
lated during lymphoid development[36–39]. Therefore, the
restrictive and temporal expression of all Notch genes can
constitute by itself a mechanism for Notch-signaling regula-
tion and specificity. By immunohistochemical analysis, it has
been shown that Notch-1 is differentially expressed during T
cell development with high level of expression at the most
immature stages of development, i.e. double negative stage
(DN), a decreased intensity at the double positive stage (DP)
and an intermediate level of expression at the single positive
(SP) stage[37]. These data show that Notch-1 expression is
dynamic during thymus differentiation. In accordance with
this pattern of expression during lymphocyte development,
absence of Notch1 in hematopoietic stem cells blocks T cell
development at the DN-1 stage[7], while conditional inval-
idation of Notch-1 at the DN-3 mice stage has no effect on
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receptors[16,17]. Nevertheless, the picture is not so simple
and contradictory patterns of Notch receptors expression by
peripheral naive T cell sub-populations have been reported
using quantitative RT-PCR[16,17]indicating that potent anti-
bodies, especially, for immunohistochemical analysis will be
necessary to precisely determine Notch–Notch ligand expres-
sion profile for each hematopoietic sub-population.

3. Modulators of Notch signaling: the role of Fringe

One possibility to explain the differential effects of Notch
ligands is a variation of Notch-signaling intensity depending
on the ligand. The regulation of Notch signal intensity could
possibly be due to the activity of Fringe modulator. Glyco-
sylation of different EGF repeats are involved in interaction
between Notch receptors and Notch ligands (review in Ref.
[45]).

Fringe does not regulate Delta and Jagged ligands in
an equivalent manner[46]. It has been shown that Lunatic
Fringe suppresses Jagged-1 signaling while enhancing Delta-
1 signaling, underlying a certain degree of diversity between
modulators of Notch that belong to the same family[47].
One interesting point is that Lunatic Fringe can suppress
Jagged-1-induced signaling even though Jagged-1 can still
bind to Notch-1, suggesting that suppression occurs after
l ors
c nd-
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cell development, suggesting that Notch-1 activity is t
orally restricted to early T cell development[40]. Notch-3

s also expressed in thymocytes while Notch-2 expressi
eaker[36]. Notch-2 expression is associated with B
evelopment has been observed at the pro-B stage[41]. Con-
istently, conditional inactivation of Notch-2 does not affe
ell development[42]. Over expression of an activated fo
f Notch-2 permits early pro-B cell development but blo
cell maturation at the pre-B stage[43]. Thus, pro-B cell
ay need to down-regulate Notch-2 expression to con

hrough B cell development. These data highlight the n
f a dynamic pattern of Notch expression to ensure effi
ignaling[43].

In the thymus, Delta-1 and Delta-4 expression is mo
ound on stromal cells while Delta-3 expression is
etectable[39,13]. Expression of Delta ligands is higher

he cortex when compared with the medulla, reinforcing
dea that Delta-induced Notch activation is important
arly T cell development. Jagged-1 expression is restr

o the thymus epithelium, whereas Jagged-2 is expre
n both lymphoid and stromal cell compartments of
hymus suggesting that Jagged ligands may play dis
ole in Notch mediated T cell development[36]. It has bee
roposed that Jagged-2 is involved in reciprocal thymoc

nteractions, whereas Jagged-1 action may be rest
o the cross talk between thymocytes and stromal
36].

Concerning peripheral hematopoietic populations,
enerally observed that APCs expressed Notch lig

25,44]while lymphocytes sub-population expressed No
igand binding[47]. By using mutant proteins, the auth
learly demonstrated that Fringe modulation of liga
nduced Notch-1 signaling is strictly dependent on Fr
lycosyltransferase activity, but how changes in glyc

ation can affect ligand-induced Notch signaling rem
nknown. Losses in glycosylation could alter the struct
roperties of Notch[48]. However, it was next demo
trated that Fringe glycosylation of Notch-1 affects
erentially Notch-1 proteolysis induced by ligand bind
46]. In this study, the authors showed that Notch-1 sig
ng induced by Delta-1 is enhanced by all Fringe prot
upporting the idea that Fringe proteins potentiate Del

nduced Notch-1 signaling through increased ligand bind
n response to Jagged-1, Lunatic and Manic but not Ra
ringe suppresses signaling without affecting ligand b

ng. This suggests that ligand–receptor interactions do
romote the proteolysis required for activation of do
tream signaling events[46]. Binding assays on culture
ells and functional analysis of Notch mutations indica
hat the EGF domain #12 repeat is important for Serr
otch interaction while others EGF repeats are invo

n Delta–Notch interactions ([49], for discussion, se
ef. [45]).
Altogether, these findings suggest that different c

inations of Notch ligands, receptors and Fringe prot
an deliver different levels of signaling and lead to
erent biological outcomes. How could glycosylation af
otch–Notch ligand interactions to either positively or ne

ively regulated Notch signaling? One proposed hypothe
hat glycosylation of Notch potentiate signaling by enhan
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ligand binding, but this is not the case for Jagged-1. Biochem-
ical analysis of modulation by Fringe proteins of Delta-1 and
Jagged-1 binding on Notch-2 lead to the observation that
each Fringe protein acts on a different site of the extra cel-
lular region of Notch2[50]. The authors proposed that the
difference in modulator function of multiple Fringe proteins
may result from the distinct amino acid sequence specificity
targeted by these glycosyltransferases[50].

4. Proteolytic cleavage of Notch ligands

Biochemical studies have shown that Delta ligand is
cleaved resulting in a soluble form constituted by the extra
cellular domain (Delta–ECD), which function is unclear. The
DSL ligands are proteolytically processed, but in contrast
with Notch receptor, such cleavage seems to be constitutive
[51–53]. The question now is to understand the function of
such secreted ligand, does it act as a Notch activator or does
it antagonize normal Delta-induced activation?

A secreted form of Notch ligand LAG-2 has been identi-
fied in Elegans[54]. This soluble ligand acts as a signaling
molecule ([54,55], whereas inDrosophila, secreted forms of
Delta and Jagged were shown to have antagonistic effects
during eye and wing development[56]. In mammals, solu-
ble forms of Delta and Jagged have been studied, however,
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of endocytic vesicles and was shown to be necessary both
in signal-generating cell (Delta-expressing cell) and signal-
receiving cell (receptor-expressing cell) for normal Notch
signaling[61]. Endocytosis concerns both Notch ligand and
Notch receptor and thus, signal-generating cell and signal-
receiving cell. A mechanism oftrans-endocytosis was also
described[62].

5.1. Delta endocytosis

The study of various mutants inDrosophila lead to the
observation that Delta is transported to the cell surface and
is then internalized by endocytosis[63,64]. Recent data sug-
gest that this Delta ligands endocytosis is required for Notch
activation [65]. Ubiquitine residues serve as a signal for
endocytosis and two E3 Ubiquitine ligases are responsible
for Delta ubiquitination; Mindbomb (Mib) was described in
Zebrafish [66] and Neuralized (Neur) inDrosophila [67].
Mib physically interacts with Delta and promotes its ubiq-
uitination and internalization[66], which have been shown
to up-regulate Notch activity. InZebrafish mib mutants, a
reduced lateral inhibition mediated by Notch is observed due
to a reduction in Notch-signaling activity[66]. Two models
have been proposed to explain Delta endocytosis function.
In the first one, Mib acts in the signal-delivering cell by
clearing Delta from Notch at the cell surface and thus pre-
v
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epending on the cellular context and experiments the
s antagonist or agonist of Notch ligand or even as ne
olecules. It is thus difficult to have a clear scheme for

unction of soluble Notch ligands in mammals[53,57–59].
evertheless, various hypothesis on soluble ligands fun
ave been proposed: (1) the soluble forms of Notch lig
ould regulate Notch-signaling pathway by competing w

heir transmembrane counterpart or (2) Notch ligands
leaved to clear the cell surface of signal-delivering cell
hus stop activation of Notch pathway[60], a situation tha
oes not agree with a constitutive cleavage. However, in
ituations, Notch ligand cleavage permits the regulatio
otch signaling and thus, constitutes an important ste

egulation between various ligands.
As far as we know this process of extra cellular shed

as been described only for Delta-1 in mammals and for
igands inDrosophila. Additional data about the cleavage
ther Delta ligands, especially, Delta-4 and Jagged lig
ill be necessary.

. Control of Notch–Notch ligands processing and
ndocytosis

Endocytosis was recently described as a major mecha
n Notch-signaling pathway and its role in Notch regu
ion was highlighted by recent findings. The first evide
or the role of endocytosis in Notch signaling came fr
he analysis of the shibire protein mutant inDrosophila.
hibire is a dynamic homolog necessary for the forma
enting cis-inhibition of Notch via Delta (see Ref.[68]).
he second hypothesis is that Mib acts directly as an
ator of Delta activity, allowing to conformational chang
hat unmask the S2 Notch cleavage site necessary for s
uent Notch signaling. This second hypothesis is supp
y a number of accumulating data. Delta proteins, defic

or endocytosis, exhibit reduced signaling capacity in
uring imaginal development[65] and fail to supporttrans-
ndocytosis of the extra-cellular domain of Notch (NEC

65]. Delta was shown to be co-localized with NECD, s
esting that NECD forms a complex with Delta. This s

s critical for Notch activation and is required to achi
rocessing and dissociation of Notch protein[65]. Thus, sub
equent Notch signaling in signal-receiving cell is depen
n Delta endocytosis and NECDtrans-endocytosis. Delt
utants lacking their intracellular domain inhibit Notch a

ation and act as dominant negative proteins[69,70]. One
ypothesis is that by the absence of the intra-cellular dom
elta is not endocytosed and thus failed to activate N
ignaling.

Neur and Mib exert similar roles in Delta endocyto
owever, the role of Neur was described in the deve

ng eye ofDrosophila [67] and its role in vertebrates rema
nclear since loss of function experiments in mouse ex
nly a slight phenotype[71,72]. Recently, the function o

he Drosophila ortholog of Mib (D-Mib) was tested an
hown to be required for multiple Neur-independent/No
ependent developmental processes[73]. D-Mib is able to
escue various aspects of Neur mutant phenotype, sugg
hat, at least inDrosophila, Neur and Mib exert overlappin
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functions[73]. An interesting observation is that Neur pref-
erentially regulates Delta, whereas D-Mib preferentially acts
on Serrate[73], while they are both able to interact and reg-
ulate the two DSL ligands. These results suggest a certain
degree of specificity between the ubiquitine ligase and the
target ligand. Thus, it could be that these two ubiquitine lig-
ases act synergistically in vertebrates, but more probably, that
they are specifically co-expressed in different tissues with the
appropriate Notch ligand, an issue that needs to be investi-
gated.

5.2. Serrate–Jagged endocytosis

Until recently, only one study onDrosophila cultured
cells, expressing Serrate, described a mechanism oftrans-
endocytosis of Notch receptor[74]. Endocytosis of Jagged
ligands was never described in vivo. However, some new
findings emerge suggesting that endocytosis of Notch lig-
ands is a general mechanism of Notch-signaling activation
and thus Notch regulation. It was demonstrated that D-Mib
interacts with both Serrate and Delta ligands[73] even if
D-Mib/Jagged association appears to be weaker than D-
Mib/Delta one. Moreover, Mib targets both ligands for endo-
cytosis, promoting their signaling activities inDrosophila
[73]. However, the phenotypes observed in theDrosophila
Neur mutant or in theZebrafish andXenopus Mib mutants
s ig-
a Delta
e nd
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The observation that over expression of constitutive active
forms of Notch-1 and Notch-3 under the control of the lck
promoter does not lead to the same results further supports
that different Notch receptors may have distinct functions
[21,36,76]. In addition, the inability of other Notch recep-
tors, i.e. Notch-3, to compensate for the loss of Notch-1
during T cell development indicates that these proteins are
not interchangeable[7]. Furthermore, in vitro studies have
shown that the ICD of Notch-3, by contrast with Notch-1, is
a poor transcriptional activator of HES[77]. In fact, they show
that Notch-3 ICD acts as a Notch-1 repressor by competing
with Notch-1 ICD for access to RBP–Jk and also that Notch-
1 and Notch-3 compete for a common co-activator present in
limiting amounts[77].

Notch-1 and Notch-2 have also been studied for their
capacity to inhibit granulocyte differentiation[78]. While
Notch-1 ICD inhibits granulocytic differentiation induced by
G-CSF but not GM-CSF, Notch-2 ICD inhibits GM-CSF-
induced granulocyte differentiation but not G-CSF[78]. The
authors define a Notch cytokine response (NCR) region that
is associated with differences in post-translational modifica-
tions and sub-cellular localization[78]. The phosphorylation
of a critical serine residue in Notch-2 NCR is responsible for
such specificity[79].

Thus, there are biochemical evidences that NICD con-
tain specific regions and amino acid sequences that give
a gu-
l For
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[ also
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trongly support the notion that ubiquitination of DSL l
nds is required both in invertebrates and vertebrates. If
ndocytosis and NECDtrans-endocytosis are required a
ecessary for Notch-signaling activation in signal-recei
ell, it is then difficult to imagine a totally distinct mech
ism for Jagged-induced Notch activation. Thus, it is m

ikely that all the different steps and partners necessar
otch–Notch ligand endocytosis (Shi/dynamine, Mib, N

alized) are differentially regulated and expressed depen
n which Notch ligand is activating the target cell.

. Transcriptional regulation

Upon ligand binding, Notch receptors are cleaved an
ICD is translocated to the nucleus, where it acts as a
criptional regulator by displacing co-repressor proteins
ICD contains domains mediating signal transduction. W

n the nucleus, NICD associates with a transcription fa
alled CSL (CBF-1/RBP–Jk, suppressor of hairless (Su
ag-1) and recruits a co-activator protein Mastermind. O

ranscriptional co-activators (p300) are thereafter recruit
orm a multiproteic complex capable of transcriptional a
ation of target genes. In absence of NICD, the multipro
omplex is inhibited by the co-repressor Groucho and
cription is blocked (for review, see Ref.[75]). Thus, NICD is
potent regulator of gene expression as a nuclear co-act
Given the highly conserved domains of the intracell

egion of the Notch receptors[34], the question of how dis
inct functions of Notch receptors can be induced is still o
.

certain degree of specificity. Moreover, nuclear re
ators of Notch may also regulate Notch signaling.
nstance, Mint inhibits the transcriptional activity media
y RBP–Jk. Double hybrid experiments showed that M
ompetes with Notch1–ICD to interact with RBP–Jk[80].
nother negative regulator of Notch signaling, the No

egulated ankyrine-repeat protein (Nrarp) has been sho
lock CBF-1-dependent transcriptional activation of No
esponsive genes[81].

Notch-induced transcriptional activity can also be re
ated by the quantity of Notch–ICD present in the nucl
wo proteins have been identified as regulators of N
nd were identified as responsible for Notch ubiquitina
nd subsequent degradation. Sel10 is a negative regula
otch signaling[82], which interacts with the nuclear form
otch[83] and is responsible for its ubiquitination and deg
ation by the proteasome[84]. Sel-10/NICD interaction take
lace in the nucleus and permits to control the activatio

arget genes. The second regulator Deltex was first id
ed as a positive regulator of Notch pathway inDrosophila
nd encodes for a putative ubiquitine ligase. Deltex ca
s a positive or negative regulator of Notch dependin

he species[85]. Deltex directly interacts with NICD an
ossibly inhibits Su(H)–NotchIC interaction in the nucl

86,87]. Further evidences demonstrated that Deltex is
ssociated with Notch-dependent transcriptional events[87].

t was shown in vitro on cultured cells that an important f
ion of Deltex-1, one of the four mammalian homolog
rosophila Deltex, is localized in the nucleus and physic

nteracts with p300 a co-activator molecule recruited into
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active complex by NICD in order to activate target genes
expression[88]. However, the nuclear localization of Deltex
remains controversial and it is generally admitted that Deltex
is one of the cytoplasmic Notch regulators. Deltex and Sel-10
appear to be potent Notch-signaling regulators as they allow
NICD degradation and thus repress the activation of specific
targets genes.

A new type of regulation has been recently described.
Numb an adaptator protein, which recruits the ubiquitina-
tion machinery, promotes Notch-1 ubiquitination at the cell
membrane. When ubiquitinilated at the membrane, NICD is
directly degraded, therefore, circumventing nuclear translo-
cation and downstream activation of Notch-1 target genes
[89]. A transgenic mouse model over expressing murine
Numb under the control of the lck promoter has been cre-
ated[90]. These mice do not exhibit any defects in T cell
development again suggesting that Notch-1 activation is nec-
essary at very early developmental stage and that a restricted
window is open for Notch-1 to exert its activity and activate
target genes.

7. Conclusions
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