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Abstract

Intermediate filaments form an essential structural network, spread throughout the cytoplasm and

play a key role in cell mechanics, intracellular organization and molecular signaling. The maintenance

of the network and its adaptation to the cell’s dynamic behavior relies on several mechanisms

implicating cytoskeletal crosstalk which are not fully understood. Mathematical modeling allows us

to compare several biologically realistic scenarios to help us interpret experimental data. In this

study, we observe and model the dynamics of the vimentin intermediate filaments in single glial cells

seeded on circular micropatterns following microtubule disruption by nocodazole treatment. In these

conditions, the vimentin filaments move towards the cell center and accumulate before eventually

reaching a steady-state. In absence of microtubule-driven transport, the motion of the vimentin

network is primarily driven by actin-related mechanisms. To model these experimental findings, we

hypothesize that vimentin may exist in two states, mobile and immobile, and switches between the

states at unknown (either constant or non-constant) rates. Mobile vimentin are assumed to advect

with either constant or non-constant velocity. We introduce several biologically realistic scenarios

using this set of assumptions. For each scenario, we use differential evolution to find the best

parameter sets resulting in a solution that most closely matches the experimental data, then the

assumptions are evaluated using the Akaike Information Criterion. This modeling approach allows

us to conclude that our experimental data are best explained by a spatially dependent trapping of

intermediate filaments or a spatially dependent speed of actin-dependent transport.

I. INTRODUCTION

Intermediate filaments are key components of the cytoskeleton and are involved in fun-

damental cell functions including stress response, cell growth, proliferation, migration and

death [1–3]. The organisation of the cytoplasmic network formed by of intermediate filaments

endows the cell with robust mechanical properties [4–6], and is critical for all intermediate

filament functions. Disruption of intermediate filament organization in cells is observed

in numerous diseases related to mutations of intermediate filament proteins [7–9]. This

relationship between organization and function warrants a careful study of the primary

drivers behind the dynamic spatial distribution of intermediate filaments.

Intermediate filament proteins organize to form a dynamic filamentous network through
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three interdependent processes: one, assembly and disassembly of soluble intermediate

filament proteins [10, 11], two, active transport of filaments via molecular motors walking on

microtubules or actin fibers [12–15], and three, a continuous retrograde flow towards the cell

center that affects intermediate filament organization, resulting from centripetal movement

of actin filaments, in part powered by acto-myosin contractility [15–19]. In [19], plectin-

mediated crosslinks between actin and vimentin intermediate filaments are shown to affect

the organization of both cytoskeletal systems. These processes interact in a constant state of

flux, helping to maintain homeostasis of the intermediate filament network in interphasic

cells under no cytopathogenic conditions. However, there is little known about how each

process contributes and interacts towards intermediate filament network spatial distribution

and organization.

Mathematical modeling studies often explore specific elements of the above processes,

including mechanisms for intermediate filament in vitro assembly and disassembly [20–26],

intermediate filament in vivo network formation and organization [27–32], and intermediate

filament transport along microtubules driven by motor proteins such as kinesin and dynein

[33–40]. Modeling studies that consider interactions between actin and intermediate filament

networks are limited to the properties of the resulting network, such as [41], where the

authors characterize the robustness of the intermediate filament network with and without

actin, and [42], where the authors find that the interaction between actin and intermediate

filaments control the extent of keratinocyte cell spreading.

In contrast to existing studies, our long-term goal is to understand how the processes

interact to form and maintain intermediate filament networks. Some work has been done in

this direction, e.g., [31], where the interplay between a net inward transport and assembly/dis-

assembly processes is considered and the net transport is found to be the dominating process.

In the present study, we simplify the problem by eliminating one of the three processes

by applying nocodazole to depolymerize microtubules, disrupting microtubule-dependent

transport (kinesins and dyneins). What remains is actin-mediated transport. We seek to

create a biologically plausible model that explains the resulting experimental data, which

consist of intermediate filament spatial distributions over time in primary astrocytes (major

glial cells of the central nervous system). In particular, the distribution data are of fluorescent

vimentin, which are an intermediate filament protein expressed in mesenchymal origin cells.

Modeling this data allows us to infer the underlying biological mechanisms.
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All code and data used to generate figures are publicly available on GitHub at https:

//github.com/youngmp/retrograde_flow_models

II. METHODS

A. Experimental Protocol

a. Cell culture Primary rat astrocytes were prepared as previously described in [43],

according to the guidelines approved by the French Ministry of Agriculture, following

European standards. Cells were grown to confluence in Dulbecco’s Modified Eagle Medium

medium with 1 g/L glucose and supplemented with 10% FBS (Invitrogen, Carlsbad, CA),

1% penicillin–streptomycin (Gibco, ThermoFisher scientific) and 1% Amphotericin B (Gibco,

ThermoFisher scientific).

b. Micropatterns and drug treatment The micropatterning technique is used to impose

reproducible cell shape and decipher cell morphogenesis and functions [44]. We have previously

used astrocytes plated on micropatterns to study cell polarization [15]. Briefly, primary

rat astrocytes are plated onto glass-bottom tissue culture dishes coated with fibronectin

after deep UV micropatterning of the surrounding polyethylene glycol (PEG). We used

60 µm-diameter disks where only single cells were allowed to spread. Cells cannot adhere

outside of the micropattern. Nocodazole from a stock 10 mM in DMSO (Sigma Aldrich) was

added to the cells at a final concentration of 10 µM.

c. Immunofluorescence Cells were fixed in cold methanol for 5 minutes and blocked

with 3% BSA in PBS for 1 h. Cells were then incubated for 1 hour with vimentin primary

antibodies (Santa Cruz Biotechnology No sc-7557R) diluted 50 times in PBS, washed three

times in PBS and then incubated another hour with secondary antibodies (Jackson Immuno

Research, Alexa Fluor 488) diluted 500 times in PBS. Finally, coverslips were washed and

mounted in Prolong Gold with DAPI (Thermo fisher). Epifluorescence images were obtained

on a microscope (model DM6000, Leica, Solms, Germany) equipped with 40x, NA 1.25 and

a 63x, NA 1.4 objective lenses and were recorded on a CCD camera using Leica software.

d. Radial profile intensity Radial profile intensity was plotted for every cell using the

Radial Profile Plot plugin from Fiji (FIG. 1(c)). The plugin plots the average intensity around

concentric circles as a function of distance from a point in the center of the micropattern.
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FIG. 1. Fluorescent vimentin in cells seeded on circular micropatterns. Micropattern areas are

shown by the white dotted curves in panels (a), (b). Spatial distribution of fluorescent vimentin

in representative cells (white material within the micropattern boundary (a), (b)) exhibit an

approximate circular symmetry. Fluorescence intensity corresponds directly to vimentin quantity.

Red circular regions denote the approximate location of cell nuclei across all cells. (a): Fluorescence

intensity of a control cell (i.e., cells not subjected to nocodazole), which we treat as an initial

condition, hence the label 0 h. (b): Fluorescent vimentin of a cell after being exposed to nocodazole

for 24 h, which we treat as a steady-state profile. In (a) (resp. (b)), vimentin intensity is averaged

along concentric circles, with two representative circles shown in green (resp. blue) and their

corresponding average intensity values marked by green (resp. blue) x’s in panel (c). (c): Average

fluorescence intensity curves in arbitrary units (a.u.) as a function of radius from the cell center

up to the cell edge. The green dashed curve corresponds to the control cell (a) and the blue

curve corresponds to the cell subjected to nocodazole for 24 hours (b). Data in the red region –

corresponding to the red circles in panels (a) and (b) – are discarded.

Two representative circles are shown in FIG. 1 for a cell before the addition of nocodazole (a,

green) and for another cell 24 h after the addition of nocodazole (b, blue). The corresponding

average intensity values along these circles are marked by x’s in panel (c) in corresponding

colors.
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B. Data

Our fluorescence intensity data is circularly symmetric after computing the radial profile

intensity, thus information over the radial coordinate is sufficient to represent data (FIG.

1(c)). We then average the intensity data over multiple cells that have been exposed to

nocodazole for different amounts of time before being fixed (FIG. 2(a)). The average data

come from 4 cells at 0 h, 8 cells at 0.5 h, 11 cells at 1 h, 5 cells at 2 h, 11 cells at 4 h, 13

cells at 8.5 h, and 5 cells at 24 h. The red circular regions in FIG. 1(a) and (b) denote the

approximate region of the cell nucleus, which varies from cell to cell, and is therefore excluded

in the model calibration. From this point forward, we do not consider the discarded region

for radii between 0 µm to 10 µm (FIG. 1(c)).

Before deriving the model, we formalize notation. Let L0 = 10 µm denote the approximate

boundary of the nuclear envelope for all cells, and let L = 30 µm denote the cell edge. The

index set of nocodazole exposure duration is given by

Vt := {0, 0.5, 1, 2, 4, 8.5, 24} (units in hours).

The index set of radial coordinates is denoted by Vr, where the elements are simply the

horizontal coordinates of the data curves (FIG. 2).

Let the function Ṽt(r) represent fluorescence intensity data for hour t at radial coordinate

r. For each time point, we normalize the data by requiring that

2π

∫ L

L0

Ṽt(r)r dr = 1, (1)

which is simply a normalization using the total area under the averaged data on the micropat-

tern (excluding the 10 µm-radius circle) in polar coordinates. We abuse notation and also

let Ṽt(r) denote the normalized fluorescence data for hour t (FIG. 2(b)). Unless otherwise

stated, we only use the normalized average fluorescence data (FIG. 2(b)) from this

point forward. In addition, we refer to the “fluorescence data” simply as “data”.

We use the initial data Ṽ0(r) (cells not subject to nocodazole) as the initial condition and

the final data Ṽ24(r) (cells after 24h of nocodazole exposure) as the steady state solution

for our partial differential equation (PDE) models, which require smooth functions on R.

A straightforward choice is to approximate the initial data using a sum of Gaussians. An

approximation is shown in FIG. 2(b), inset, where the average initial data (gray) is plotted
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FIG. 2. Vimentin fluorescence data over space and time. In all panels, darker shades correspond to

later experimental times. The final data at 24 hours is denoted by a blue curve. The r−axis of

each plot is the domain and corresponds to the radial distance from the cell center. (a): Average

vimentin fluorescence profiles. The average data was collected from 4 cells at 0 h, 8 cells at 0.5 h, 11

cells at 1 h, 5 cells at 2 h, 11 cells at 4 h, 13 cells at 8.5 h, and 5 cells at 24 h. (b): Normalized average

vimentin fluorescence profiles (1). We use the 0 h curve as the initial condition for simulations

(written Ṽ0(r), where r ∈ [L0, L], for L0 = 10 µm and L = 30 µm). The bold label for panel (b)

is to emphasize that we use the normalized, average vimentin data for model-fitting. (b), inset:

Least-squares approximation of data using a sum of 10 Gaussians. Control data (gray) is shown

with its approximation (dashed green) superimposed. Free parameters for each Gaussian are the

width, amplitude, and shift. We use the approximated curve (dashed green) to initialize model

simulations.

with its approximation (dashed green) superimposed. Generally, if Ṽ0(r) or Ṽ24(r) appear in

model equations, they represent the Gaussian approximations and otherwise represent data.

C. Mathematical Models of Vimentin Organization

The primary goal of this paper is to construct a minimal model of vimentin spatial

distribution in cells after triggering microtubule depolymerization. To drive our modeling

efforts, we take note of salient qualitative features over time in the normalized data (FIG.

2(b)): upon microtubule depolymerization, the vimentin profile advects from the cell edge

towards the cell center and accumulates near the nuclear envelope before eventually stabilizing.
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To model the observed motion and stabilization, we rely on two primary mechanisms. The

first mechanism involves an inward motion of vimentin from the cell edge to cell center that

we name retrograde flow. This retrograde flow results from complex actin-related dynamics,

which has not been investigated experimentally in this study. In particular, how retrograde

flow depends on location within the cell or how much it transports is unknown. In the

model derivation to follow, we allow the retrograde velocity to be an arbitrary function,

u(·), then consider several plausible forms of u(·). The second mechanism allows vimentin

to switch/transition between two states; mobile vimentin and immobile vimentin. Mobile

vimentin is subject to retrograde flow and thus move towards the cell center, while immobile

vimentin is not subject to retrograde flow. Given a small interval in space and time, some

mobile vimentin may become immobile and stop moving (“trap”), or some immobile vimentin

may become loose and move with the retrograde flow (“release”). We call these processes the

“trap-and-release” mechanism. Trapping could be a result of cross-links between filaments or

with other intracellular components that prevent intermediate filament motility [45, 46].

a. Modeling Framework: Let V (x, t) represent the average vimentin intensity data on

the annular domain

x ∈ Ω := {(x, y) : L0 ≤ ‖x‖ ≤ L},

where L0 corresponds to the nuclear envelope and L corresponds to the cell edge. In our

modeling framework, vimentin refers to the total fluorescent vimentin composed of soluble

forms, assembled in short or long filaments and integrated in networks. Protein degradation

and de novo synthesis are neglected.

We assume that the data consists of some underlying combination of mobile and immobile

vimentin: V (x, t) = I(x, t)+M(x, t), where I represents immobile vimentin and M represents

mobile vimentin. Then we model the dynamics of cellular vimentin distribution using an

advection equation

∂V

∂t
(x, t) =

∂I

∂t
(x, t) +

∂M

∂t
(x, t) = ∇ · (u(·)M),

since I does not advect. The function u(·) represents retrograde flow velocity and is a

vector-valued function where its output vector points towards the origin. We define the

equation for I to be,
∂I

∂t
= αM︸︷︷︸

Trap

− βI︸︷︷︸
Release

, (2)
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where the right-hand side is the trap-and-release mechanism defined by a first-order exchange

between mobile and immobile vimentin. The parameters α and β are the trap rate and

release rate, respectively. Then the model equations are

∂I

∂t
= αM − βI,

∂M

∂t
= ∇ · (u(·)M)− (αM − βI).

(3)

We assume that V is circularly symmetric in agreement with the data. While I and M ,

the component parts of V , are plausibly not circularly symmetric, we also assume circular

symmetry in I and M for simplicity. Hence, we exploit circular symmetry of the underlying

solutions and transform (3) to polar coordinates, where we discard the angular coordinate

and restrict the domain to a one-dimensional radial line on the interval [L0, L]. Thus, (3)

becomes

∂I

∂t
(r, t) = αM − βI,

∂M

∂t
(r, t) =

1

r

∂

∂r
(ru(·)M(r, t))

︸ ︷︷ ︸
Advection/Retrograde Flow

− (αM − βI)
︸ ︷︷ ︸
Trap & Release

,
(4)

considered with the initial conditions,

I(r, 0) = εṼ0(r), M(r, 0) = (1− ε)Ṽ0(r),

where the free parameter ε ∈ [0, 1] represents the initial proportion of immobile vimentin in

the data Ṽ0(r) (FIG. 2(b), inset). While the data show a residual quantity of vimentin at

the cell edge L at some times, we observe a decay in vimentin at the cell edge over time. For

simplicity, we choose a homogeneous Dirichlet condition at the cell edge,

M(L, t) = 0,

for all t ≥ 0.

b. Assumptions and Hypotheses: Using our modeling framework defined in (4), we now

explore our model assumptions with distinct assumptions and hypotheses and formulate

different scenarios.

All Constant Parameters - T1 - Here, we assume velocity is a constant, free parameter

and denoted by u(·) = ū (FIG. 3(a)). The remaining free parameters ε ∈ [0, 1] and α, β ≥ 0

are also constant parameters.
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Quantity-Dependent Velocity - T2 - We assume that u(V ) is a monotonically decreas-

ing function of vimentin quantity V (i.e., du/dV < 0). This mechanism is phenomenologically

described by the simplest linear choice for u(V ):

u(V ) = um

(
1− V

Vm

)
, (5)

where um and Vm are free parameters and represent the maximum retrograde velocity and

maximum vimentin quantity, respectively. An example of this function is shown in FIG.

3(b), bottom, given an example solution V (x, t) at t = 1 h: the velocity is relatively small

near maximum vimentin quantity, whereas the velocity is relatively large in regions of lower

vimentin quantity. Velocity reduces as a function of vimentin quantity, resulting in an effect

similar to a traffic jam.

For the assumptions with constant parameters (T1) and quantity-dependent velocity (T2),

we consider the following hypotheses:

A. Trap and release: mobile vimentin may become immobile and vice-versa. α, β > 0.

B. Only release, no trapping: only the initial proportion of immobile vimentin can become

mobile and mobile vimentin can not become immobile. β > 0, α = 0.

C. Pure transport with neither trap nor release: mobile vimentin do not become immobile

and vice-versa. α = β = 0.

D. Only trap, no release (irreversible trapping): mobile vimentin can only become immobile

and immobile vimentin can not become mobile. α > 0, β = 0.

We remark that assumptions T1 and T2 with nonzero velocity do not obey conservation

of mass because some mobile vimentin is guaranteed to leave the domain. However, we are

allowed to assume conservation of mass for assumption T3 below.

Spatially-Dependent Terms - T3 - Here, we assume some model terms to depend on

space and consider the following hypotheses:

E. Irreversible trapping and spatially-dependent velocity depicting cell compartmentaliza-

tion with conservation of mass: Suppose that β = 0 and let α ≥ 0 be constant. Then

it is possible to write down the spatially-dependent velocity

u(r) =
α

rÎ(r)

∫ r

L0

sÎ(s)

(
1 +

M0(s)

Î(s)

)
ds, (6)
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FIG. 3. Example velocity profiles u(·). (a): An example of a constant velocity profile, ū =

0.16 µm/min [15]. (b), top: An example solution of model (4), where V (r, t) = I(r, t) + M(r, t),

at t = 1 h with ε = 1, α = β = 0. (b), bottom: A plot of u(V (r, t)), the corresponding vimentin

quantity-dependent velocity defined by (5) with Vm = 7× 10−4, um = 0.2 and V (r, t) is taken from

(b), top. (c): An example of a spatially-dependent velocity (6).

where Î(r) := I0(r) − I∗(r), I∗(r) := Ṽ24(r), I0(r) := I(r, 0) = εṼ0(r) and M0(r) :=

M(r, 0) = (1− ε)Ṽ0(r) (see Appendix B 1 for a derivation). The parameters α > 0 and

ε ∈ [0, 1] are the only two free parameters. An example of this function is shown in

FIG. 3(c).

F. Spatially-dependent net attachment rate and constant velocity with conservation of

mass: Similarly, if we set β = 0 and assume a constant velocity u(·) = ū, then it is

possible to write down the spatially-dependent rate,

α(r) =
rūÎ(r)∫ r

L0
s(Î(s) +M0(s)) ds

. (7)

Note that we allow this function to be negative, and thus represents a net exchange

between mobile and immobile vimentin. Hence, α(r) represents the spatially-dependent

net attachment rate. The parameters ū > 0 and ε ∈ [0, 1] are the only two free

parameters.

In these spatially-dependent scenarios T3E and T3F, the retrograde flow velocity and

trapping rate are closely related: α is the main determinant of the speed for T3E and ū

scales the magnitude of the net attachment rate α(r) for T3F.
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FIG. 4. Mechanisms considered in the modeling framework (4). For illustration, we show solutions

of scenario T3E (irreversible trapping with spatially-dependent retrograde velocity). (a): The

model involves two populations of vimentin: immobile (I) and mobile (M). The mobile vimentin is

subject to retrograde flow, while the immobile vimentin is stationary. (b): Initial data. The data is

assumed to be the sum of mobile and immobile vimentin, i.e., V (r, t) = I(r, t) +M(r, t). The initial

conditions for I and M are taken to be some proportion of the initial data, Ṽ0(r), determined by

the parameter ε ((c), (f)). (d), (g): The model uses two mechanisms. The first mechanism involves

advection of mobile vimentin towards the left boundary L0 (panel (g)). The advection velocity may

be taken to be constant, space-dependent, or quantity-dependent. If advection velocity is constant

or quantity-dependent, it is possible for mobile material to advect out of the domain (hypotheses

T1 and T2, resp.). The second mechanism involves a transition rate from mobile (immobile) to

immobile (mobile) denoted by α (β). (e), (h): Steady-state. After enough time, all mobile material

have become immobile (panel (e)). Parameters: ε = 0.2, α=0.01, β = 0, dt=0.01, N=100.
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TABLE I. (a) Description of free parameters with units. (b) parameter dependency for each

hypothesis. Parameters with dimension 1 are dimensionless. Check marks (X) denote free parameters

to be estimated, while 7 marks denote parameters that are to be excluded for a given hypothesis. We

implement different hypotheses by setting corresponding parameters to zero. Purple cells correspond

to the all constant parameters (T1), light brown cells correspond to the quantity-dependent velocity

assumption u(V ) (T2), and gray cells correspond to the spatially-dependent assumption, u(r) or

α(r) (T3).

(a)

Param. Description Units

ε Initial proportion of immobile vimentin 1

α Trapping rate 1/min

β Release rate 1/min

ū Constant retrograde velocity µm/min

um Maximum velocity in the jamming mechanism (5) µm/min

Vm Maximum quantity V in the jamming mechanism (5) 1

(b)

Const. (T1) Qty. (T2) Space (T3)

Hypothesis ε α β ū ε α β umVm ε α β ū

A. Trap & Rel.XXX X XXX X X

B. Release X 7 X X X 7 X X X

C. Transport X 7 7 X X 7 7 X X

D. Trap XX 7 X XX 7 X X

E. Trap, u(r) XX7 7

F. Trap, α(r) X 7 7 X

We illustrate our modeling framework (4) using scenario T3E (irreversible trapping and

spatially-dependent retrograde flow u(r)) in FIG. 4. Descriptions of parameters are in TABLE

I(a) with a summary of free parameters for each hypothesis in TABLE I(b). For convenience,

we let Vs := {T1A,T1B,T1C,T1D,T2A,T2B,T2C,T2D,T3E,T3F} denote the index set
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of scenarios considered in this work.

D. Model Evaluation

Recall Vt, Vr, and Vs, index of observation times, index of observation positions, and the

index of scenarios, respectively. Given a scenario i ∈ Vs and corresponding parameters pi

(Table I(b)), we numerically evaluate the scenario using method of lines with forward Euler

(Appendix A 1). We then compare the solution against the data by using the residual sum of

squares (RSS)

RSSi(pi) =
∑

t∈Vt

∑

r∈Vr

(
Ṽt(r)− Vi(r, t,pi)

)2

, (8)

where Ṽt(r) is the experimental normalized vimentin quantity and Vi(r, t,pi) is the ith

scenario’s solution (given by the sum of mobile and immobile vimentin, Vi = Ii +Mi). The

vimentin profiles are relatively small in magnitude, on the order of 1× 10−4, so the RSSi

values are relatively small for our problem. To make parameter space minima more apparent,

we use the base-10 log of the error during the optimization procedure. Furthermore, since

experimental vimentin profiles approach a steady state (FIG. 2(b)), we impose a condition

to ensure that the solution reaches a steady state within the 24 h experimental time frame.

Hence, the optimization error is expressed:

∆(pi) =





log10 (RSSi(pi)) if steady-state

105 else
. (9)

We define the steady-state condition to be true when

∑

r

(V (r, t1,pi)− V (r, t2,pi))
2 < δ,

where δ = 1× 10−10, t1 = 20 h, and t2 = 24 h. The steady-state condition forces the error

to be a relatively large value if the model solution is not at steady-state towards the end of

the simulation. In other words, if the PDE solution at 20 h and 24 h differs by more than

the threshold amount δ, then we say that the solution has not reached steady-state and we

return a relatively large error of 105. Hence parameter sets for which the scenario solution

does not reach steady state after 20 h are disqualified.
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For each scenario i ∈ Vs, we minimize (9) over the space of parameters and take the

exponent to recover the RSS:

RSSi(p
∗
i ) = min

p
[RSSi(p)] = 10(minp[∆(p)]),

where p∗i is the estimate of pi that yields the minimal error. We refer to p∗i as the optimal

parameter set and use asterisks on individual parameters if they are part of an optimized

parameter set. We use the differential evolution function available in Python’s scipy package

[47] and run the differential evolution 100 times for each scenario using a tolerance of 1× 10−4.

We discriminate between the ten (= |Vs)|) scenarios in this study using the model selection

Akaike information criterion (see for details Appendix A 2). Then, further investigations

are carried out on two biologically plausible scenarios that yield the best model outputs.

Confidence intervals for parameters values are computed using the log-likelihood ratio statistic

(see Appendix A 3 for details). Finally, a global sensitivity analysis with eFAST is then

carried out to determine the driving parameter(s) of these two scenarios. We use the optimal

parameter values as baseline values from which we perturb in the space of parameters, then

quantify the resulting change in the RSS (8). The RSS is most likely non-monotonic and

nonlinear for both models so we use eFAST [48], which is appropriate in this case and

returns two key quantities: the first-order sensitivity index Sk for parameter k, which simply

measures the variance in the the RSS (and thus the model output) as a result of variance in

parameter k, and the total-order sensitivity index STk , which measures the sum all of first

and higher-order interactions between the parameters.

III. RESULTS

The ten scenarios of the collection Vs are calibrated using the same average vimentin data

(FIG. 2(b)). For a given scenario, we perform the calibration by searching for parameter

values resulting in solutions that most closely reproduce the data (i.e, by minimizing the

optimization error (9) using differential evolution [49]). We repeat this calibration 100 times,

yielding a collection of up to 100 optimal parameter sets. For the reader’s convenience, we

include solutions of 10 parameter sets with the lowest RSS (out of the 100 parameter sets) of

all scenarios in FIG. ??.
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FIG. 5. Scatter plots of parameter estimates. For each scenario, we obtain 100 parameter estimates

by minimizing the RSS with differential evolution. Darker shades correspond to lesser RSS values

and lighter shades correspond to greater RSS values. Parameter values with darker shades are

considered optimal parameter values. The clustering/spatial distribution of optimal parameters in

the parameter spaces informs on the parameter identifiability for each scenario. Hence, scenarios

T1D, T2D, T3E, and T3F are identifiable. All RSS values are rounded to the fourth decimal place.

A. Model Identifiability

For each scenario, we plot parameter value-pairs found by the 100 runs of the optimization

in FIG. 5. For a scenario to be considered identifiable, the parameters values providing

the global minimum of the RSS must be tightly “clustered” in parameter space (intuitively,

identifiable scenarios are “good models” as they have single values for parameters when

calibrated to data). Only scenarios T1D, T2D, T3E, and T3F satisfy these requirements. For

each of these scenarios, the global minimum, marked by dark dot(s), are tightly clustered. In

contrast, the remaining scenarios, those under hypotheses A through C exhibit a relatively

great degree of dispersal.

In hypothesis A, which results in the most complex scenarios, none of the parameters

are identifiable. In hypothesis B, where scenarios only possess the release mechanism with

no trapping (α = 0 and β > 0), the optimal velocity for the retrograde flow is found to
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TABLE II. Akaike information criterion (AICi) values for each scenario i ∈ Vs and Akaike weights

wi. The parameter Ki indicates the number of parameters estimated for the computation of AICi

values.

T1 T2 T3

Hyp.Ki AICi wi Ki AICi wi Ki AICi wi

A. 5 -16861.48 0 6 -16137.10 0

B. 4 -16863.48 0 5 -16144.27 0

C. 3 -16865.12 0 4 -16863.12 0

D. 4 -17204.23 0 5 -17541.09 0

E. 3 -19236.60 0

F. 3 -19862.73 1

be ū∗ = u∗m = 0 and the initial proportion of immobile vimentin ε∗ is not identifiable

(FIG. 5 T1B, T2B). Hence, if all vimentin eventually become mobile and eventually no

immobile vimentin exists, the only way to recover the data is to assume no transport, which

is inconsistent with the working biological assumption. Furthermore, FIG. 5 T1B, T2B show

that forcing the velocity to be zero results in practically non-identifiable scenarios. For all

scenarios under hypothesis C, i.e., scenarios with pure transport (α = β = 0), the velocity

parameter ū is not identifiable, the calibration results in either zero velocity ū∗ = u∗m = 0

(which violates the biological assumption and can not be considered), or a positive velocity

(ū∗, u∗m > 0). In the latter case, the optimization finds ε∗ = 1 (FIG. 5 T1C, T2C), so the

scenarios initialize with only immobile vimentin; because there is no exchange between mobile

and immobile, the initial immobile vimentin is the solution for all time.

In summary, a strict loss of immobile vimentin results in a non-identifiable scenario, and

the lack of exchange between immobile and mobile vimentin unambiguously favors a purely

immobile solution (where the scenario also happens to be unidentifiable). Furthermore, only

the identifiable hypotheses (D, E, and F) allow mobile vimentin to become immobile with

no transition from immobile to mobile by definition (β = 0). Hence, we conclude that the

existence of immobile vimentin is necessary to explain the data.
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B. Model selection results

We include all identifiable and non-identifiable scenarios in the model selection procedure

because it is possible for a non-identifiable scenario to outperform other scenarios under

AIC (only the minimal RSS is needed – parameter properties and values are not considered).

It would be undesirable for model selection to choose a non-identifiable scenario, however,

choosing an identifiable scenario over non-identifiable scenarios would provide an additional

degree of confidence in the chosen scenario.

AIC values provide a means to rank the different scenarios. Akaike Information Criterion

(AIC) values and Akaike weights for each scenario are shown in TABLE II. Note that scenarios

with the greatest AIC values happen to be the non-identifiable hypotheses A to C (the top-

ranked scenario has the lowest AIC). To make a conclusive determination of the best scenario,

we use the Akaike weights wi, which tells us that scenario T3F, which is characterized

by a spatially-dependent net trapping rate (FIG. 6(c)), is an unambiguous choice to

best represent the experimental data among the collection of considered scenarios.

Going further in the interpretation of the model selection results, we note that with

no accumulation of immobile vimentin via trapping (hypotheses B and C where α = 0),

the corresponding scenarios are ranked poorly, reinforcing the previous observation that

vimentin trapping is required to explain the experimental observations. In particular, note

that scenarios T1C and T1B, which differ in the parameter β > 0 (release rate), obtain close

AIC values, making the model selection method inconclusive for discriminating between

these scenarios. Next, when only considering assumption T1 (resp. T2), hypothesis A (which

has the greatest number of parameters) ranks the lowest, whereas hypothesis D always ranks

the highest. Indeed, scenario T2D is the third best scenario and is characterized by β = 0

with a crowding effect described by a quantity-dependent velocity.

Again considering all scenarios, the poor ranking of the constant-velocity and quantity-

dependent velocity assumptions relative to the spatially-dependent assumptions, T3E and

T3F, is consistent with the biological observations of spatially-dependent retrograde flow

of actin [19] and the underlying compartmentalization of cell organelles interacting with

vimentin [50–54], respectively. Because both scenarios are biologically plausible, we examine

them in more detail.
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FIG. 6. Solutions of scenarios T3E and T3F. Each column in (a), (c) corresponds to an experimental

time point t ∈ Vt. Black curves correspond to the PDE solution for total vimentin, V = I + M

with experimental data overlaid in dashed green. Blue curves correspond to the PDE solution for

immobile vimentin I and orange curves correspond to the PDE solution for mobile vimentin M .

Shaded regions denote solutions obtained with parameter values in confidence intervals in the most

sensitive parameter (see FIG. 7(b), (d)) (a): Scenario T3E, spatially-dependent retrograde velocity

u(r) with constant trapping rate α. Optimal parameter values are ε∗ = 0 and α∗ = 0.011. (b):

Retrograde velocity profile (6) as a function of space. (c): Scenario T3F, spatially-dependent net

trapping rate α(r) with constant velocity. Optimal parameter values are ε∗ = 0.55 and ū∗ = 0.11.

(d): Net trapping rate function (7) as a function of space. For the optimized solutions of all other

scenarios, see Appendix C.

C. Best Scenarios: Spatially-Dependent Assumption

Solutions of both scenarios T3E and T3F compared to data are shown in FIG. 6(a) and

6(c) along the top rows. The initial and final solutions are expected to match exactly because

of how we define the initial condition and how we derive the spatially-dependent velocity

(6) for T3E and spatially-dependent trapping rate (7) for T3F (in particular, defining the
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TABLE III. Scenario T3E (a) and T3F (b) parameter sensitivity determined using eFAST. Si

is the first-order sensitivity index of parameter k and STk is the total sensitivity of parameter k.

Baseline parameter values correspond to the optimal parameter value(s), and the range denotes the

parameter range over which the sensitivity analysis is performed.

(a) T3E

Par. Si STi Range Baseline

ε 3.6× 10−6 5.3× 10−3 [0, 5.0× 10−2] 0.0

α 0.88 0.97 [0, 5.0× 10−2] 0.011

(b) T3F

Par. Si STi Range Baseline

ε 6.6× 10−3 4.6× 10−2 [0, 0.7] 0.55

ū 0.96 1.00 [0, 0.3] 0.11

steady-state solution of the PDE to match the data at 24 h is a key assumption (see Appendix

B)). Thus, the contribution lies in recovering the solutions at intermediate times and the

strong agreement between the model solution and the data at these intermediate times.

a. Model Robustness: We now determine the robustness of scenarios T3E and T3F to

perturbations in their optimized parameter pairs, (ε∗, α∗) and (ε∗, ū), respectively. We use

the respective optimal values (ε∗, α∗) = (0, 0.11) and (ε∗, ū∗) = (0.55, 0.11) as baseline values

from which we perturb in the space of parameters, then quantify the resulting change in the

RSS (8). The results of the sensitivity analysis are shown in TABLE III.

Scenario T3E is least sensitive to the proportion of initial immobile vimentin, ε, while

virtually all model output variance is explained by parameter α (TABLE III(a)), which

controls both the transition rate from immobile to mobile and the magnitude of the spatially-

dependent retrograde velocity profile u(r) (6). Similarly, scenario T3F is least sensitive to

the proportion of initial immobile vimentin, ε, while virtually all model output variance is

explained by parameter ū (TABLE III(b)), which determines the average retrograde velocity

and the magnitude of the spatially-dependent net attachment rate.

Our sensitivity results are further supported by visualizing the RSS for both models (FIG.
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FIG. 7. Visualization of the RSS (8) for scenarios T3E and T3F. As indicated by the color bars,

lighter (darker) shades correspond to higher (lower) values of the RSS. The unique global minimum

is denoted by an orange x at p∗ = (ε∗, α∗) = (0, 0.011) in (a) and at p∗ = (ε∗, ū∗) = (0.55, 0.11) in

(c). The white curve in (b), (d) delimits the confidence region with a significance level of p = 0.05.

We obtain confidence intervals using the likelihood ratio statistic [55]. Colors in (b), (d) denote

the approximate χ2 values given by the difference ln [RSS(θ0)/N ] − ln [RSS(p∗)/N ], where θ0 is

an arbitrary choice of parameters (ε0, α0) for T3E (resp. (ε0, ū0) for T3F) (see Appendix A 3).

Lower χ2 values correspond to parameters with greater than 95% confidence assuming three free

parameters (the two model parameters and variance of the error assumed in the statistical model).

(a), (b): Scenario T3E RSS and confidence interval, respectively. (c), (d): Scenario T3F RSS and

confidence interval, respectively.

7). The RSS for scenario T3E is shown in FIG. 7(a), and a greater variation in the RSS

is visible in α relative to ε. Parameter values in the red shaded region fail to satisfy the

steady-state condition, i.e., the model solution at 20 h does not closely match the model

solution at 24 h (recalling that α controls the magnitude of the spatially-dependent velocity,

if α is too small, then the retrograde velocity is too slow, and the solution takes longer than
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20 h to reach steady-state). However, for a complete visualization of the surface, we also plot

the RSS without the steady-state condition underneath the red shaded area. This region,

while not relevant to our analysis, reveals that our RSS is qualitatively smooth and exhibits

no unusual nonlinearities. Parameter values in the white region result in an undefined spatial

velocity profile u(r). This issue arises because the spatial velocity profile (6) is defined in

terms of the reciprocal of the difference between the initial and final immobile vimentin, Î. If

ε is sufficiently large, then there exists a zero crossing in Î, resulting in a singularity. Thus,

numerically-computed solutions do not converge. In contrast, the RSS of the best scenario

T3F is always well-defined (FIG. 7(c)). We see a greater variation in the RSS surface in ū

relative to ε, consistent with the sensitivity results.

Next, we compute the confidence interval for the estimates of α and ε for T3E and ū and

ε for T3F (for details, see Appendix A 3). The white curve in FIG. 7(b) (resp. FIG 7(c))

delimits the confidence interval for parameter values with a significance level of p = 0.05

for T3E (resp. T3F). Solutions and the resulting approximates of the spatially-dependent

velocity and net attachment rate obtained with parameters values from confidence intervals

are shown in FIG. 6.

Note that for the best scenario T3F, the confidence interval for the initial proportion of

immobile vimentin ε is found to be (55± 6) %, which endorses the existence and requirement of

a non-negligible proportion of vimentin that stays immobile in cells (FIG. 7(c)). Furthermore,

the confidence interval for ū for T3F is found to be (0.11± 0.01) µm/min (FIG. 7(c)), which

is in the range of the peak magnitude of retrograde velocity u(r) in T3E that is on the

order of 0.1 µm/min (FIG. 6(b)). In similar studies of actin-dependent intermediate filament

transport, magnitudes of retrograde velocity vary from 0.16 µm/min [15] to 0.5 µm/min

[56]. Our velocity estimates are consistent with [15], but our estimate may differ from [56];

however, this study was carried out in epithelial cells expressing keratin (another type of

intermediate filament protein). Both differences in cell type and intermediate filament protein

may explain the velocity difference. Moreover, we model data for net retrograde flow of all

intermediate filament material including particles, single filaments or integrated in networks

and involved in slow or fast motions. In contrast, the authors of [56] only follow individual

particles that may not be homogeneous in velocity – some particles exhibit movement in

the anterograde direction and others in the retrograde direction – and measure the average

speed of transport independent of direction. Thus, their velocity estimates are greater than
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ours but still in the same order of magnitude.

b. Estimation of the velocity profile for actin-driven transport: While the agreement

between T3E and the data is not as strong as scenario T3F, scenario T3E allows a spatially-

dependent approximation of the velocity (6) of retrograde actin-driven transport, by using

vimentin material as an observable (FIG. 6(a)). As discussed above, the trapping rate α is the

most influential parameter of the retrograde flow speed and controls the time to stabilization

for intermediate filament material.

c. Estimation of the net trapping rate profile: Indeed, scenario T3F reproduces the

data strikingly well at intermediate times. Another important contribution is that scenario

T3F allows a spatially-dependent approximation of the net trapping rate (7), in which the

retrograde velocity ū is the most influential parameter, by using vimentin material as an

observable (FIG. 6(d)).

IV. DISCUSSION AND CONCLUSION

Here we have combined experimental approach and mathematical modeling to explore the

mechanisms involved in the organization of the cytoplasmic intermediate filament network.

By comparing 10 different models using model identification, AIC model selection, and

sensitivity analysis, we can identify two major biologically relevant models and extract

valuable information including key parameters and the spatial distribution of biological

mechanisms.

The identifiable scenarios ( “good models” having single values for parameters) show that

we must consider a pool of immobile vimentin filaments and that immobile vimentin can not

transition back to mobile vimentin (i.e., β > 0 is not allowed). Our analysis also allows us

to exclude scenarios. If β > 0, then all mobile vimentin eventually move out of the domain

unless the retrograde velocity is zero, which contradicts the biological assumption of nonzero

retrograde velocity. Similarly, if there is no transition from mobile to immobile, the only way

to reach a non-zero steady-state is to either let the velocity be zero, or force all material to

be immobile. Identifiable scenarios consistently show that β = 0, further suggesting that

some mechanism for sequestering mobile vimentin is necessary.

Next, we use model selection to quantify how well each scenario and its underlying

assumptions and hypotheses reproduces the data. Hence, we use the AIC model selection
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method to rank the scenarios. Our model selection results bolster our confidence in our

conclusions from model identifiability. Indeed, under AIC, identifiable scenarios outperform

non-identifiable scenarios when reproducing the data. Furthermore, the top-ranked scenarios

in AIC are from hypotheses D, E, and F, where β = 0, providing additional evidence that

irreversible trapping is an important feature of the scenarios we consider. In addition, we find

that scenario T3F, irreversible trapping with spatially-dependent trapping, is unambiguously

the best scenario out of the scenarios considered. The spatial profile of the trapping rate –

particularly where it increases towards the cell center – is consistent with existing studies

showing vimentin interaction with organelles, including the nucleus [50–54]. Furthermore,

recalling that α(r) in this case is a net trapping rate, the negative values of α(r) towards the

cell edge suggests that vimentin trapping is reduced at the cell periphery, possibly indicating

a lower number of attachment sites (Fig. 6(d)).

The second best scenario, T3E, which uses a spatially-dependent retrograde velocity, is

also consistent with biological observations. In particular, the spatially-dependent velocity

increases from the cell edge and decreases towards the cell center. This profile suggests a few

possible mechanisms (Fig. 6(b)). One, actin dynamics is locally regulated and varies from

the cell periphery to the cell center, or two, lower velocities correspond to regions with a

high degree of crowding and increased drag.

Our sensitivity results applied to both scenarios T3E and T3F show that they are sensitive

to the transition rate from mobile to immobile, α, and the constant retrograde velocity ū,

respectively. Neither model is sensitive to the initial proportion of immobile vimentin, ε.

The latter observation tells us that the model can reproduce the data even if the initial data

contains a small amount of immobile vimentin.

We highlight several important implications of our work. First, although it is tempting

to explain experimental data (ours herein and [16]) by speculating that transport is solely

sufficient to describe the observation, we conclude here that pure transport alone (hypothesis

C) insufficiently reproduces our data; we consistently find that hypothesis C can only

reproduce the data if a constant pool of immobile vimentin is considered, which doesn’t

change in time.

Second, the top two scenarios, T3E and T3F, both exhibit spatial dependence but in

what appears to be a fundamentally related fashion. For example, the second best scenario,

T3E, allows us to compute a spatially-dependent velocity u(r), where its magnitude is
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directly proportional to the trapping rate α. Interestingly, the best scenario, T3F, allows us

to compute a spatially-dependent net trapping rate α(r), where its magnitude is directly

proportional to the constant retrograde velocity ū. Due to the nature of our data, we are

unable to determine the spatial profiles α(r) and u(r) simultaneously. However, based on our

results, we suspect that both the trapping rate and the retrograde velocity are both spatially

dependent, and more importantly, that they are fundamentally related. The exact nature

of this relationship is yet to be established and will be a focus of future experimental and

theoretical work.
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Appendix A: Additional Method Details

1. Numerical Scheme

We use the following upwinding scheme to numerically integrate model (4):

In+1
i = Fni + ∆tT (Mn

i , I
n
i ),

Mn+1
i = Mn

i + ∆t

[
ri+1ui+1M

n
i+1 − riuiMn

i

ri∆r
− T (Mn

i , I
n
i )

]
,

where i = 1, . . . , N − 1, T (M, I) = αiM − βI. The terms αi and ui are defined as either

constant or spatially-dependent. If the velocity is quantity-dependent, then we replace ui

with the quantity-dependent function (5)

u(V n
i ) = um

(
1− V n

i

Vm

)
,
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were V n
i = Ini +Mn

i , and um, Vm are free parameters representing the maximum retrograde

velocity and maximum vimentin quantity respectively. We impose a Dirichlet condition on

the right boundary: Mn
N+1 = 0.

2. Model Selection

To select the best candidate scenario we use the Akaike information criterion (AIC).

AIC selects for the scenario with the lowest RSS while applying a penalty in the number

of parameters [57]. Assuming independent and normally distributed additive measurement

errors with the same variance, we may approximate the AICi for model i using the RSS:

AICi = N ln

(
RSSi(p

∗
i )

N

)
+ 2Ki,

where N is the number of observations and Ki is the number of parameters (all parameters

of scenario i ∈ Vs including one additional parameter from a bias correction term). We use

143 spatial points of the experimental data for each of the 7 time observations for a total of

N = 1001 observations.

The Akaike weights wi are then computed:

wi =
exp(−∆i/2)∑
j∈Vs exp(−∆j/2)

,

where ∆i = AICi −minn∈Vs (AICn) is the difference between the AIC of scenario i and the

AIC of the scenario with the lowest AIC. Roughly speaking, the greater the Akaike weight wi,

the stronger the evidence that scenario i is the best scenario in the set of proposed scenarios

[58].

3. Confidence Interval

For a given optimized parameter set p∗, we compute confidence intervals using the

log-likelihood ratio statistic [55], which provides an alternative method to approximating

confidence intervals using the RSS. We approximate the log-likelihood of parameters by

ln(RSS(θ0)/N), assuming independent and normally distributed additive measurement errors

with the same variance. Note that N = 1001 is the total number of observations (143 spatial

data points for each of the 7 observation times). Letting θ0 = (ε0, α0) for T3E (θ0 = (ε0, ū0)
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for T3F) denote an arbitrary parameter set and χ2
γd = 7.815 (where γ = 5% and d = 3) the

set defined by

{
θ0 : ln

[
RSS(θ0)

N

]
− ln

[
RSS(p∗)

N

]
≤
χ2
γd

N

}
(A1)

defines the region of parameter space with a significance level at or below p = 0.05. The

boundary of the set (A1) corresponds to the confidence interval.
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FIG. 8. Solutions of all scenarios. The solution using the parameter set with the lowest RSS out of

the 100 optimizations is plotted in black, blue, and orange for V , I, and M , respectively. Gray curves

are solutions using parameters with the 9 next lowest RSS values. (a): Scenario T3E, irreversible

trapping with spatially-dependent velocity. Optimized parameters: ε∗ = 0, α∗ = 0.011. (b):

Scenario T3F, spatially-dependent net trapping rate with constant velocity. ε∗ = 0.55, ū∗ = 0.11.

(c): Scenario T1A†, trap and release with constant velocity. ε∗ = 0.690, α∗ = 19.205, β∗ = 4.180,

ū∗ = 6.175× 10−7. (d): Scenario T1B†, only release with no trapping with constant velocity.

ε∗ = 0.925, β∗ = 0.562, ū∗ = 1.098× 10−7. (e): Scenario T1C†, pure transport with constant

velocity, (α = β = 0). ε∗ = 1, ū∗ = 6.189× 10−4. (f): Scenario T1D, irreversible trapping with

constant velocity (β = 0). ε∗ = 0, α∗ = 1.657× 10−2, ū∗ = 5.400× 10−2. (g): Scenario T2A†, trap

and release with vimentin-dependent velocity ε∗ = 0.335, V ∗m = 1.167× 10−3, u∗m = 5.277× 10−2,

α∗ = 10.527, β∗ = 11.537 (h): Scenario T2B†, only release with no trapping with vimentin-

dependent velocity (α = 0). ε∗ = 6.981× 10−2, V ∗m = 2.131× 10−3, u∗m = 2.765× 10−2, β∗ = 6.549.

(i): Scenario T2C†, pure transport with vimentin-dependent velocity (α = β = 0). ε∗ = 1.0,

V ∗m = 0.549, u∗m = 2.953× 10−3. (j): Scenario T2D, irreversible trapping with vimentin-dependent

velocity (β = 0). ε∗ = 0, V ∗m = 6.599× 10−6, u∗m = 0.111, α∗ = 1.477× 10−2. †A dagger indicates a

non-identifiable scenario.

Appendix B: Derivation of Spatially-Dependent Terms

We consider the special case where there is no explicit detachment (β = 0) and allow α or

u(·) (but not both) to be nonconstant in space (resp. hypotheses E and F):

∂I

∂t
=α(r)M,

∂M

∂t
=

1

r

∂

∂r
(ru(r)M)− α(r)M,

I(r, 0) = εṼ0(r), M(r, 0) = (1− ε)Ṽ0(r).

Plugging the first equation into the second yields

1

α(r)

∂2I

∂t2
=

1

r

∂

∂r

(
ru(r)

α(r)

dI

dt

)
− ∂I

∂t
.

Then integrating with respect to time results in a first-order differential equation,

1

α(r)

∂I

∂t
(r, t) =

1

r

∂

∂r

(
ru(r)

α(r)
I(r, t)

)
− I(r, t) + c(r), (B1)
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where c(r) is a spatially-dependent constant of integration. To solve for c(r), let t = 0 in

(B1):

1

α(r)

∂I

∂t
(r, 0) ≡M(r, 0)

=
1

r

∂

∂r

(
ru(r)

α(r)
I(r, 0)

)
− I(r, 0) + c(r),

then solve for c(r) directly:

c(r) = M0(r) + I0(r)− 1

r

∂

∂r

(
ru(r)

α(r)
I0(r)

)
,

where I0(r) := I(r, 0) := εṼ0(r) and M0(r) := M(r, 0) := (1− ε)Ṽ0(r). We plug c(r) back

into (B1) and take t→∞:

0 = −1

r

∂

∂r

(
ru(r)

α(r)
Î(r)

)
+ Î(r) +M0(r), (B2)

where Î(r) := I0(r) − I∗(r) with I∗(r) := Ṽ24(r) (as we assume that at 24h the vimentin

profile has reached its steady state and all vimentin is immobile). We use the ODE (B2) to

derive the spatially-dependent terms u(r) or α(r).

1. Spatially-Dependent Velocity

Consider (B2) with α > 0 constant and u(r) spatially-dependent. Then the ODE for u(r)

is given by

∂

∂r

(
ru(r)Î(r)

)
= αr

[
Î(r) +M0(r)

]
, (B3)

which has the solution,

u(r) =
α

rÎ(r)

∫ r

L0

s
(
Î(s) +M0(s)

)
ds+

L0u(L0)Î(L0)

rÎ(r)
. (B4)

We assume u(L0) = 0 to enforce conservation of mass. Note that the velocity equation (B4)

depends explicitly on α, the transition rate of mobile to immobile vimentin, and implicitly on

ε, the proportion of immobile vimentin (because the initial conditions M0 and I0 depend on

ε). Therefore, using the spatially-dependent velocity with conservation of mass (B4) results

in a two-parameter model.
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2. Spatially-Dependent Net Trapping Rate

Again consider (B2), but now assume u(r) = ū and that α(r) is spatially-dependent. Then

the ODE for α(r) given by,

∂

∂r

(
r

α(r)
Î(r)

)
=
r

ū

[
Î(r) +M0(r)

]
,

which has the solution,

α(r) =
rūÎ(r)∫ r

L0
s(Î(s) +M0(s)) ds− L0ūÎ(L0)/α(L0)

.

To ensure conservation of mass, we assume that α(L0) is large, thus we may approximate

the spatially-dependent net trapping rate with the simpler equation,

α(r) =
rūÎ(r)∫ r

L0
s(Î(s) +M0(s)) ds

.

Appendix C: Best Fit Solutions

For each scenario i ∈ Vs, its “optimized parameters” simply refer to the parameters that

result in solutions that optimally fit the data according to the optimization error (9). The

optimal parameters are found using the inherently stochastic differential evolution method,

which we run 100 times for each scenario to ensure that we find a global minimum in

parameter space. We then plot the solutions corresponding to the 10 optimized parameter

sets with the lowest optimization error values in FIG. ??. The best of the 10 optimized

parameter sets (according to the optimization error) are plotted in black (total vimentin

Vi = Ii + Mi), blue (immobile vimentin Ii), and orange (mobile vimentin Mi). Solutions

corresponding to the remaining 9 runs are shown in gray.
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