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Abstract 

The cellular basis and extent of neural stem cell (NSC) self-renewal in adult vertebrates, and their 

heterogeneity, remain controversial. To explore the functional behavior and dynamics of individual 

NSCs within brain germinal pools, we combined genetic lineage tracing, quantitative clonal analysis, 

intravital imaging and global population assessments in the adult zebrafish telencephalon. We show 

that adult neurogenesis is organized in a hierarchy where a subpopulation of reservoir NSCs with long-

term self-renewal potential generate a pool of operational NSCs taking stochastic fates biased towards 

neuronal differentiation. To fuel the long-term growth of the adult germinal niche, we provide evidence 

for the existence of an additional, upstream, progenitor population that supports the continuous 

generation of new reservoir NSCs, contributing to their overall expansion. Hence, the dynamics of 

vertebrate neurogenesis relies on a hierarchical organization where growth, self-renewal and neurogenic 

functions are segregated between different NSC types. 
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Report 

The brain of most adult vertebrate species, including human, hosts specialized precursor cells, called 

neural stem cells (NSCs), which fuel the ongoing production of neurons into discrete brain regions (1-

5). Adult-born neurons bring an additional layer of plasticity into local circuits that appears critical for 

particular aspects of learning and memory (6). In mammals, alterations of adult neurogenesis have been 

linked functionally to major depression and anxiety-like behaviors (6, 7). Despite extensive studies, the 

functional and molecular identity, long-term renewal potential, and pattern of division of NSCs remain 

controversial. Notably, while several works suggest that NSCs in both the dentate gyrus (DG) and the 

subependymal zone (SEZ) of the mammalian telencephalon are progressively consumed over time (8-

13), others report a substantial self-renewal (14-16), or even amplification, potential of NSCs (17). 

Similar discrepancies were also reported in the adult zebrafish telencephalon (18, 19). Accordingly, 

most models put forward in these studies also reached conflicting conclusions regarding the mode of 

NSC divisions. Whether such divergences reflect technical specificities and/or represent an underlying 

heterogeneity of the NSC compartment remains an important open question.  

To resolve the functional identity, fate behavior and lineage dependencies of NSCs in an adult vertebrate 

brain, we used quantitative clonal analysis to target their fate in the zebrafish dorsal telencephalon 

(pallium). The everted morphology of the pallium exposes its ventricle (Fig. S1A), making constituent 

NSCs and their progeny readily accessible to whole-mount investigation, and allowing a combination 

of intravital imaging and genetic cell lineage tracing over a lifetime (20, 21). Further, under 

physiological conditions, progenitor cell migration is never observed and newly-generated neurons 

delaminate to settle under the pallial ventricular surface adjacent to the place where they were born (19, 

22). Thus, the zebrafish pallium provides an optimal system to perform clonal analysis of NSC fates, 

as neural clones remain compact and superficial, allowing their whole cellular complement to be 

captured in a single in toto confocal acquisition.  

Zebrafish pallial NSCs share the same basic regulatory mechanisms and physiological requirements as 

mammalian NSCs (23). Based on markers, these astroglial cells are thought to be characterized by the 

expression of the glial fibrillary acidic protein (Gfap) and the enzyme glutamine synthetase (Gs) -whose 
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expression is redundant with Gfap-, the Notch-target gene hairy-related 4 (her4.1 – orthologous to 

mammalian Hes5), and the stem cell-associated transcription factor Sox2 (5, 20, 24-27). her4.1:dRFP 

and gfap:nGFP expression in the pallium of double transgenic fish almost completely overlap and 

appear to characterize the same, mostly quiescent, NSC population, which accounts for about 75% of 

Sox2-positive progenitors (Fig. 1A and S1A-D). The remaining Sox2+ cells express neither her4.1 nor 

gfap and are, for the majority (57.7±2.1%), in an activated/proliferating state (identifying them as 

activated non-astroglial neural progenitors -aNPs-, against 42.3±2.1% quiescent/non-proliferating 

neural progenitors -qNPs) (Fig. S1D). aNPs make up the bulk of actively proliferating pallial 

progenitors (Fig. S1A,E), likely representing transit amplifying progenitors (TAPs), which generate 

neurons after a limited number of cell divisions (19, 25, 26).  

To target the fate of individual pallial NSCs and their progeny in the dorso-medial pallial domain (Dm) 

during adulthood over extended periods of time, we opted for an inducible genetic lineage tracing 

approach (Fig. 1B). We crossed the transgenic driver line Tg(her4.1:ERT2CreERT2) (for short: 

her4.1:iCre), which expresses a tamoxifen-inducible Cre recombinase in her4.1-expressing NSCs (Fig. 

S2), with the Tg(-3.5ubb:loxP-EGFP-loxP-mCherry) (for short: ubi:Switch) reporter line (28) (Fig. S3). 

To establish the conditions for clonal induction, we induced 3-month post-fertilization (mpf) adult 

zebrafish with decreasing concentrations and exposure times to 4-hydroxytamoxifen (4-OHT) until 

reaching an average number of 20.7±2.45 (mean ± s.e.m.) cell clusters per hemisphere at 6 days post-

induction (dpi) (Fig. 1B-D, S4, S5 and supplementary text). Under these conditions, by 6 dpi, only 1.6% 

± 0.3% of the total Sox2+ cell population was labelled, while 46% of clones had already divided and/or 

differentiated into neurons (Fig. S6). To assign the clonal provenance of labelled cells with known 

statistical confidence, we combined a hierarchical clustering approach with a biophysical model of 

clone dispersion (Fig. 1E, S7 and supplementary text).  

Stem cells are defined functionally by their long-term self-renewal capacity. Following the report that 

zebrafish pallial NSCs might be progressively consumed through direct differentiation into neurons 

(18), in apparent contradiction with their measured steady density over the considered time frame (29), 

we first explored their maintenance within the her4 lineage. Notably, we found that the total number of 
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her4.1:iCre-traced Gs+ Sox2+ NSCs, averaged across animals, was maintained at a seemingly constant 

level throughout the   ̴17-month chase period spanning more than half the adult zebrafish life (Fig. 1F). 

This result also applied to the whole population of traced Sox2+ progenitors (Fig. 1G). Thus, the targeted 

her4 lineage is, as a whole, homeostatic and self-reliant for its maintenance, a behavior consistent with 

asymmetric fate in which the size of the labelled NSC pool remains constant over time while neuronal 

progeny is produced at a constant rate. 

Such fate asymmetry can be achieved either at the level of each and every NSC division or at the level 

of the population. Therefore, to gain insight into the fate of individual NSCs, we monitored the behavior 

and composition of her4+ NSC-derived clones over the   ̴17 month chase period. We first noted that 

NSCs (Gs+ Sox2+) maintained an overall fixed ratio to NPs (Gs- Sox2+) whether considering the whole 

population of pallial progenitors or the her4 lineage (Fig. S8). These observations suggest that the 

behavior of the entire population of Sox2+ pallial progenitors is slave to that of the renewing NSC 

population. Therefore, since Sox2 nuclear localization improves the reliability of cell identity 

assignment, Sox2 expression was used as a surrogate NSC marker. Consistent with a population 

asymmetry-based model of NSC self-renewal, we found that the fraction of clones containing at least 

one NSC (hereafter referred to as “active clones”) decreased continuously over the first several months 

post-induction, and was matched by a concomitant increase in the average number of NSCs per active 

clone (Figs. 2A-E, S9, S10A,B). However, by 183 dpi, both measures reached a plateau that persisted 

until the end of the analysis. Importantly, the size of the traced NSC population (Fig. 1F,G), the 

proliferative activity of NSCs, as well as their fate choices at division remained approximately constant 

over the chase period (Fig. S10C,D, S12D), indicating that the apparent crossover in clone behavior 

was not associated with a change in developmental dynamics. The emergence of a plateau in clone 

statistics stands in contrast to that expected for a continuous process of NSC loss and replacement, 

where “neutral drift” would result in an ever-decreasing clone number (49), and suggests instead a 

model in which long-time renewal potential is invested in a subpopulation of NSCs that adopt 

asymmetric fate at the level of individual cell divisions. Thus, we hypothesized that her4.1-expressing 

NSCs were organized in a proliferative hierarchy, with a self-renewing subpopulation of “reservoir 
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NSCs” (rNSCs) supporting a second population of “operational NSCs” (oNSCs) with a definite average 

neurogenic potential. 

To test whether such a scheme could describe quantitatively the clonal data, we developed a minimal 

model. Within this framework, rNSCs divide asymmetrically at rate ν, giving rise to oNSCs. To capture 

the variability of clonal outputs, we proposed that oNSCs follow a pattern of stochastic fate, duplicating 

at rate λ and becoming lost through differentiation at rate µ (Fig. 2G). (Later, we consider a more refined 

model that takes into account the different channels of individual oNSC fate, viz. the relative 

frequencies of symmetric and asymmetric divisions.) From the frequency of active clones at long times 

(Fig. 2D), it followed that some 20% of initially-labeled NSCs belong to the reservoir pool. A fit to the 

data using maximum likelihood estimation indicated that, within the endogenous NSC population, 

rNSCs actually constitute some 61% of NSCs and enter into cycle around once every 143 days, on 

average, while oNSCs (forming the remainding 39% of NSCs) select between duplication or loss once 

every 43 days in the ratio of 1 to 3, respectively (for details and statistical confidence intervals see Fig. 

2G and S11A, supplementary text). Notably, in addition to the average NSC content and persistence of 

active clones (Fig. 2C,D), the model could predict the detailed clone size distributions over the entire 

time course (Fig. S11B,C). Although NSCs and NPs were pooled to increase statistical confidence, 

quantitatively similar results were obtained when the analysis was performed on the GS+ compartment 

alone.  

To further test the basis of this hierarchical scheme, and dissect in detail the fate behaviors of NSCs, 

we took advantage of our intravital imaging method, which permits individual NSCs to be recorded in 

their niche, tracking >300 NSCs per hemisphere in the Dm over several weeks under fully non-invasive 

conditions (20). gfap:dtomato transgenic individuals were crossed into the transparent casper 

background (32) and imaged live over 23 days (Fig. 3A) (20). Analysis of >80 tracks of NSCs that 

became active showed that the fate choice of most had become revealed by change in marker expression 

(loss of Gfap) by around 10 days after division (Fig. S12A,B). Consequently, tracks with less than 10 

days available after division were not scored (Fig. S12C). Based on this cohort, we found that some 

35.8±0.7% of NSC divisions result, on average, in symmetric amplifying fate (NSC/NSC fate, as 
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assessed by Gfap expression), 53.1±2.5% result in asymmetric fate (NSC/n, where “n” is a neuron or a 

NP), and 11.1 ± 1.6% result in symmetric differentiative fate (n/n) (Fig. 3B,C). Similar statistics were 

inferred from the analysis of two-cell clones recovered at 6 dpi, with values that were not altered with 

age (Fig. S12D). Notably, intravital imaging also revealed the occurrence of direct neuronal 

differentiation events where Gfap expression was lost without cell division (Fig.3D and S12C,E) (18). 

In line with the homeostatic nature of the cell dynamics within the her4.1 lineage (Fig 1F,G), we found 

that direct neuronal differentiations accounted for about 20.2 ± 1.7% of all fate choice events, thus 

contributing significantly to the overall balance in fates (Fig. 3E) (18)(20).  

To comprehensively model the her4.1 lineage, we then introduced the different qualitative fates 

observed by intravital imaging (Fig. 3A-D) into the previously determined dynamical parameters of 

r,oNSCs (Fig. 2G), to infer the predicted rates of both asymmetrical (κ) and symmetric neurogenic 

divisions (µ1) of oNSCs. This allowed us to provide a complete description of NSC dynamics, including 

the rates of all fate transitions for oNSCs (Fig. 3F). As an important validation, we found the quantitative 

pattern of NSC fates predicted by our model to be in very good agreement with the measurements 

scored in live fish (Fig. 3E) (“NSC/NSC” fates include the divisions of rNSCs -which are asymmetric 

and generate rNSC/oNSC fate- and the amplifying divisions of oNSCs -oNSC/oNSC fate-, which are 

indistinguishable in live-imaging). Furthermore, the derived frequencies of all NSC divisions (rNSCs 

and oNSCs) add up to 0.035 per day, a figure commensurate with the measured division rate of pallial 

NSCs (Fig. S1D, S10C). 

Overall, these results indicate that pallial NSCs are heterogeneous and organized in a hierarchy in which 

an upstream reservoir population divides asymmetrically - ensuring lineage homeostasis - and 

infrequently to produce operational NSCs with only limited renewal potential. The latter, despite also 

being mostly quiescent, activate more frequently and follow a pattern of stochastic fate biased towards 

neuronal differentiation, thus comprising the effective neurogenic pool. 

The perfectly homeostatic behavior of the her4.1:iCre traced NSC population was unexpected. Since 

the zebrafish brain continues to grow during adulthood, expansion of the NSC pool has been long-

hypothesized to accompany the ongoing growth of the pallium. Accordingly, we found that the total 
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number of pallial NSCs expanded roughly linearly with time until 9 months of age (Fig. 4A, and S13A). 

Analysis of nearest neighbor distances (NNDs) revealed no significant change in NSC density over the 

same time frame, as well as no correlation between NSC numbers and densities, suggesting that the 

ventricular area progressively enlarges as the brain and the NSC pool grow (Fig. S13B,C). Variation in 

labelling efficiency did not blur a potential increase in the traced NSC pool as we found no correlation 

between the number of her4.1:iCre-traced NSCs and the total number of NSCs, and only a poor and 

non-relevant correlation between the total number of NSCs and the NSC content of active her4.1:iCre-

derived clones (Fig. 4B and S13D). Furthermore, during the growth period, the her4.1:iCre-derived 

pool of NSCs tended to represent an ever-decreasing fraction of the total NSC population (Fig. S13E), 

as expected for a homeostatic pool evolving in a continuously growing population. As her4.1+ and 

Sox2+ cells maintained a fixed ratio with time, it follows that the overall population of her4.1+ NSCs 

continued to expand (Fig. 4A and S13F-H).  

Together, these results suggest that new her4.1+ NSCs are generated over time from initially unlabeled 

cells, i.e. which do not belong to the her4.1+ lineage, as targeted by the clonal induction. To add direct 

support to this interpretation, we devised a protocol for maximal induction with the her4.1:iCre driver 

line (Fig. 4C), initially labeling around 50% of Sox2+ cells (  ̴70% of her4.1+ cells, Fig. 4D,E and S1B).  

Quantification of the traced (mCherry+) NSC bulk population confirmed the invariance of the number 

of NSCs in the her4.1+ lineage (Fig. 4D,E and 1F,G). In striking contrast, quantification of unlabeled 

(mCherry-) NSC population revealed their massive expansion during the chase time (Fig. 4D,E), 

implying that new NSCs are continuously produced within the pallial niche. Hence, our results point to 

the existence of an as yet undefined “NSC source”, hierarchically upstream of her4.1+ NSCs, and 

responsible for their continuing production over time. The dynamics of the whole NSC population also 

predicts that the activity of the source fades after ages post 9-10 mpf (Fig. 4A).  

Finally, we took advantage of the clonal data to gain insight into the production dynamics of new 

neurons. The total number of labelled neurons progressively increased over the full extent of the 

experiment which, with regard to the constant number of traced NSCs, indicates that adult-born neurons 

accumulate over time (Fig. 1F,G, 4E and S14A,B). In agreement with the near-absence of apoptosis 
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during adult neurogenesis in this pallial region (19), our quantitative model also provided a very good 

prediction of the time increase in the ratio of neurons to NSCs in the lineage (Fig. 2F). These results 

also applied at the level of individual clones (Fig. S14C-E and S15A). Notably, the continuous increase 

of the ratio of neurons to NSCs in active clones underscores that the main driver of clonal growth is the 

generation of new neurons (Fig. S14D-F and S15B). Further, the lack of a major inflection in the time 

evolution of this ratio provided additional evidence that the plateaus observed in the clonal NSC 

statistics were not linked to an increase in NSC quiescence. Thus, similarly to the rodent DG (33), we 

found that zebrafish adult pallial neurogenesis is additive, i.e. results in a net addition of new functional 

neurons with time (19).  

Understanding the functional behavior and hierarchical organization of the NSC lineage is a prerequisite 

to defining their molecular identity, regulation, evolution with age, and their response to challenge. By 

integrating genetic tracing, intravital imaging and global population assessments at short- and long-

term over a lifetime, our results provide evidence that, in the adult zebrafish pallium, slow-cycling self-

renewing NSCs (termed reservoir NSCs) reside at the apex of a proliferative hierarchy and divide 

asymmetrically to give rise to NSCs (termed operational NSCs) with only limited renewal potential and 

characterized by stochastic fate. Above this hierarchy lies an as yet uncharacterized source that fuels 

the continuous production of an intrinsically homeostatic population of NSCs (Fig. S4F).  

By providing the first complete model of NSC maintenance in the adult vertebrate brain based on 

comprehensive quantitative dynamics, this study offers important conclusions: First, it demonstrates 

that common molecular and cellular signatures of NSCs (her4 and gfap expression, and radial glia 

nature) mask functional heterogeneities. Second, it shows that NSC dynamics involves a hierarchy of 

specialized sub-populations, comprising bona fide self-renewing NSCs (reservoir) supporting a shorter-

lived (operational) neurogenic pool. As a result, this model may unite previous phenotypical or lineage 

work on mammalian adult NSC pools. A partition of NSCs between a mostly dormant and a more active 

pool (in which NSCs shuttle between rest and activation) was recently proposed in the mouse DG based 

on mutant analyses (34). Likewise, Hes5-expressing DG NSCs as well as Troy-expressing SEZ NSCs 

also appear to conform to a homeostatic behavior (35), raising the possibility that the previously 
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reported activity-dependent consumption of NSCs might rather reflect the dynamics of an 

operational/activated pool (8, 9, 12, 14, 36). Finally, most intriguingly, NSCs within the Nestin lineage 

of the DG were also shown to increase in number over time (17), suggesting that a source population 

responsible for NSC production might also exist in the mouse brain. Thus, while the model we propose 

primarily applies to the adult pallial neurogenic area of the zebrafish brain – potentially reconciling 

apparently conflicting results (18, 19) -  it may provide an interesting framework to rethink and explore 

further NSC self-renewal and diversity in other systems, such as the mammalian brain. It also suggests 

that adult germinal populations that increase in cell number during adult life may combine homeostatic 

dynamics typical of mature tissues with a generator (“source”) akin to embryonic growth zones.  
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Materials and Methods 

Zebrafish care and strains 

All procedures relating to zebrafish (Danio rerio) care and treatment conformed to the directive 

2010/63/EU of the European Parliament and of the council of the European Union. Zebrafish were kept 

in 3.5-liter tanks at a maximal density of five per liter, in 28.5°C and pH 7.4 water. They were 

maintained on a 14 hours light / 10 hours dark cycle (light was on from 8 am to 10 pm), and fed three 
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times a day with rotifers until fourteen days post-fertilization (14 dpf) and with standard commercial 

dry food (Gemma Micro from Skretting*) afterwards. All transgenic lines - Tg(her4.1:dRFP) (37), 

Tg(gfap:nGFP)mi2004 (38), Tg(her4.1:ERT2CreERT2) (referred to as her4.1:iCre) (39) and Tg(-

3.5ubb:loxP-EGFP-loxP-mCherry) (referred to as ubi:Switch) (40) - were maintained on an AB 

background. The Tg(gfap:dTomato) (41) transgenic fish were kept on a Casper (roy−/−;nacre−/−) 

background (32). Tg(her4.1:dRFP)/+ fish were interbred with Tg(gfap:nGFP)/+ fish to obtain 

Tg(her4.1:dRFP)/+; Tg(gfap:nGFP)/+ double transgenic fish. Similarly, crosses between 

Tg(her4.1:ERT2CreERT2)/+ and Tg(-3.5ubb:loxP-EGFP-loxP-mCherry)/+ zebrafish yielded the 

her4.1:iCre; ubi:Switch double transgenic individuals used for the lineage tracing experiments. Ages 

of the fish are explicitly stated in the respective experiments (see also, 4-hydroxytamoxifen treatment), 

except for the Tg(her4.1:dRFP)/+; Tg(gfap:nGFP)/+ and Tg(her4.1:ERT2CreERT2)/+; 

Tg(her4.1:dRFP)/+ double transgenic fish as well as the Casper Tg(gfap:dTomato) fish, which were all 

four-month post-fertilization (4mpf). Fish were euthanized in ice-cold water (temperature comprised 

between 1° and 2°C) for ten minutes, according to a special dispensation and following the guidelines 

of the Ministry of superior education, research and innovation.  

Genotyping 

Fish were screened for the expression of the her4.1:dRFP, the gfap:nGFP and the ubi:Switch transgenes 

between 48 and 72 hpf. The presence of the her4.1:ERT2CreERT2 transgene was detected by PCR 

amplification of a part of the ERT2 sequence on a tail DNA sample. DNA was extracted with the “phire 

animal tissue direct PCR kit” (Thermo Scientific) according to the manufacturer instructions and PCR 

was performed with the following primers (39):  

- forward 5’-GACCCTCCATGATCAGGTCCACC-3’,  

- reverse 5’-GACCGTGGCAGGGAAACCCTCTG-3’.  

The thermocycling parameters were as follows:  

Cycle step Temperature Time Cycles 

Initial denaturation 94°C 2 min 1 

Denaturation 94°C 15 s 30 
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Annealing 58.5°C 45 s 

Extension 72°C 45 s 

Final extension 
72°C 1 min 

1 
4°C Hold 

 

The resulting 676 bp amplicon was resolved on a 2% agarose gel containing 0.002% SYBR safe 

(ThermoFisher, S33102). 

4-hydroxytamoxifen treatment  

her4.1:iCre; ubi:Switch double transgenic fish were immersed either for ten minutes in fish water 

containing 0.5 µM 4-hydroxytamoxifen (4-OHT - Sigma-Aldrich, T176) for clonal recombination of 

the reporter construct or 7 hours per day, for five consecutive days, in fish water containing 2 µM 4-

OHT for maximal recombination. Practically, fish were placed in beakers containing 4-OHT dissolved 

in fish water and protected from light with foil. We used 25 ml of solution per fish for the 10 minutes 

induction protocol and 100 ml per fish for the full induction protocol. For the latter, fish were transferred 

to fresh water every night and fed in the morning before being returned to 4-OHT-containing water; 

water and 4-OHT solution were continuously oxygenated through a pomp-generated airflow and the 4-

OHT solution was renewed every day. In both protocols, fish were rinsed at least 3 times with fresh 

water over 48 hours before being taken back to the fish facility. All fish used for the clonal analysis 

were 3 to 3.5 mpf at the time of induction. The analysis of two-celled clones (doublets of induced cells) 

in young and old fish was performed six days after induction in 3 mpf fish and in 14 mpf fish, 

respectively. The full induction experiment was carried out with 4 mpf fish. 

BrdU treatment 

Proliferating progenitors of both her4.1:dRFP and clonally induced her4.1:iCre; ubi:Switch fish were 

labelled by a 24-hour 5-bromo-2’-deoxyuridine (BrdU) pulse, just before being sacrificed. For this 

purpose, fish were placed into fish water containing 1 mM BrdU and 0.333% of dimethyl sulfoxide 

(DMSO – Thermo Scientific, 20688). Treatments were performed in beakers, with a maximum of 10 
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fish per liter of solution, under continuous air flow and at a temperature of 28°C. Fish were rinsed two 

times five minutes in fresh water before sacrifice and dissection.  

Anesthesia (live imaging) 

Anesthesia was initiated by soaking the fish for approximatively 90 seconds in water containing 0.01% 

MS222 (Sigma). They were then transferred into a water solution of 0.005% (v/v) MS222 and 0.005% 

(v/v) isoflurane to maintain the anesthesia during the whole duration of the imaging session (20). 

Overall, fish were anesthetized for about 30 minutes per session.  

Histology 

Brains were dissected in phosphate buffered saline (PBS - Fisher Bioreagents) and directly transferred 

to a 4% paraformaldehyde solution in PBS for fixation. They were fixed either for 2 hours at room 

temperature or overnight at 4°C under permanent agitation. After two washing steps in PBS, brains 

were dehydrated through a series of 25%, 50% and 75% methanol in PBS and kept in 100% methanol 

(Sigma-Aldrich, 322415) at −20°C. Following rehydration, brains were processed for whole-mount 

immunohistochemistry. An antigen retrieval step was performed for subsequent BrdU and/or Pcna 

immunolabelling. For BrdU, brains were incubated in 2M HCl (258148 – Sigma-Aldrich) at room 

temperature for 30 minutes whereas for Pcna immunolabelling they were incubated with Histo-VT One 

(Nacalai Tesque) for an hour at 65°C. Brains were rinsed three times for at least five minutes in PBS 

and then blocked with 4% normal goat serum, 0.1% DMSO and 0.1% Triton X-100 (Sigma Life Science 

– 1002135493) in PBS (blocking buffer). They were then incubated at room temperature for 24h in 

primary antibodies (table 1) diluted in blocking buffer, rinsed three times over 24 hours at room 

temperature with 0.1% tween-20 (Sigma Life Science – P9416) in PBS (PBT) and incubated in 

secondary antibodies (table 2) for another 24 hours at room temperature. After at least three rinses in 

PBT over 24 hours, brains were transferred into PBS and their telencephali were dissected out. Every 

washing and incubation step was performed on a rocking platform and, from the secondary antibodies 

onwards, was carried out protected from light. Dissected telencephali were mounted in depression slides 

with Aqua Poly/Mount (Polysciences, 18606). The brain sections presented in figure S15 were 

processed similarly, with the following modifications. After rehydration, brains were embedded in 3% 
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agarose, sliced in 50 µm-thick sections with a vibratome (Leica, VT1000 S) and recovered in PBS. 

Sections were incubated with primary and secondary antibodies overnight at 4°C and rinsed three times 

over the day in PBT. Finally, sections were incubated for ten minutes in 1 µg/ml 4′,6-diamidino-2-

phenylindole (DAPI) in PBS, rinsed three times five minutes in PBS and mounted on slides with Aqua 

Poly/Mount. 

Primary antibodies 
Antigen Species Isotype Dilution Source Reference 

Glutamine synthetase (Gs) Mouse IgG2a 1:1000 Merck MAB302 
SRY (sex determining region Y)-box 2 

(Sox2) Mouse IgG1 1:200 Abcam ab171380 

DsRed Rabbit  1:250 Takara 632496 
5-Bromo-2'-deoxyuridine (BrdU) Rat IgG2a 1:150 Abcam ab6326 
Proliferating cell nuclear antigen 

(Pcna) Mouse IgG2a 1:500 Santa Cruz 
Biotechnology PC10 

Green fluorescent protein (GFP) Chicken IgY 1:1000 Aves Labs GFP-1020 
Estrogen Receptor alpha (ERα) Rabbit IgG 1:200 Abcam ab16660 

mCherry Chicken  1:1000 EnCor 
Biotechnology 

CPCA-
mCherry 

 

Secondary antibodies 
Antigen Species Isotype Conjugate Dilution Source Reference 
Chicken IgY (H+L) Goat IgG Alexa Fluor 488  1:1000 Invitrogen A-11039 
Rabbit IgG (H+L) Goat IgG Alexa Fluor 546 1:1000 Invitrogen A-11010 
Mouse IgG2a Goat IgG Alexa Fluor 633 1:1000 Invitrogen A-21136 
Rabbit IgG (H+L) Goat IgG Alexa Fluor 405 1:1000 Invitrogen A-31556 
Mouse IgG1 Goat IgG Alexa Fluor 647 1:1000 Invitrogen A-21240 
Rat IgG (H+L) Goat IgG Alexa Fluor 488  1:1000 Invitrogen A-11006 
Mouse IgG2a Goat IgG DyLight 405 1:1000 BioLegend 409209 
Mouse IgG2a Goat IgG Alexa Fluor 488  1:1000 Invitrogen A-21131 
Rabbit IgG (H+L) Goat IgG Alexa Fluor 488  1:1000 Invitrogen A-11008 

 

Image acquisition 

Images of both whole-mounted telencephali and sections were acquired on confocal microscopes 

(LSM700 and LSM710, Zeiss), using either a 20 X air objective or a 40 X oil objective (for the 

comparison of gfap:nlsGFP and her4.:dRFP expression). With the 20X air objective, we used a z-step 

of 1 µm, a numerical aperture in each channel resulting in 1.5 µm-thick optical sections and a pixel 
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dwell time of either 1.58 or 3.15 µs. Each line was averaged twice. With the 40 X oil objective, we 

acquired 1 µm-thick optical sections, with a step of 0.75 µm and a dwell pixel time of 1.58 µs; no 

averaging was performed. The power of the lasers as well as the voltage of the photomultipliers (gain) 

were set for every single acquisition and adjusted for signal loss throughout tissue depth. For this 

purpose, lasers and gain were tuned at two to three different optical sections within a z-stack and their 

values were linearly interpolated and extrapolated to cover the whole thickness of the stack. Images 

were saved in either LSM or CZI format. 

The live imaging of gfap:dTomato-expressing NSCs was performed on a customized commercial two-

photon microscope (TriM Scope II, LaVision BioTec) equipped with a ultrafast oscillator ( λ = 690–

1300 nm, Insight DS+ from Spectra-Physics Newport). dTomato was excited with photons of 1120 nm. 

The fluorescent signal was collected in the backward direction and separated from the excitation 

wavelength by a dichroic mirror (T695lpxr, Chroma) and an interference shortpass filter (ET700SP, 

Chroma). Photons below and above 561 nm were separated by a dichroic mirror (Di02-R561, Semrock) 

and directed to the “red” detection channel equipped with a GaAsP detector (H7422-40, Hamamatsu). 

Before collection, the “red” fluorescence was further filtered using a bandpass interference filter (FF01-

607/70; Semrock). To image the entire volume of interest, spanning typically 800×800×250 µm3 (i.e. a 

single brain hemisphere), we recorded mosaics consisting of 4 z-stacks arranged in a square pattern 

with an overlap of 10%. For each z-stack the lateral field of view was 405×405 µm2, the depth of 

imaging varied from 250 to 290 µm (starting about 250 µm below the skin), the voxel size was 

0.8×0.8×2 µm3 and the pixel dwell time was 4.9 µs.  

Image processing and cell countings 

Images were exported to the Imaris solfware (versions 8 and 9, Bitplane) and converted to the Imaris 

file format.  

Lineage tracing 

To circumscribe the automatic detection of cells to the dorso-medial part (Dm) of the pallium (with the 

exception of its most posterior part), we manually drew surfaces from the most dorsal part to the most 
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ventral part of the pallium stack, outlining the sulcus ypsiloniformis on the lateral side of Dm. The 

posterior limit of these surfaces was defined by the plane perpendicular to the anterior-posterior axis of 

the telencephalon and tangent to the posterior tips of the sulcus ypsiloniformis. The compilation of these 

surfaces delineated a volume, representing our region of interest (ROI), that we used to create a new 

specific set of channels (for every original channel, we set the voxels outside the ROI to 0). A few 

neurons within the parenchyma also express Sox2 and might be unduly assigned a progenitor identity. 

To circumvent this issue, we created a new volume corresponding to the parenchyma of our ROI from 

which we deleted the Sox2 channel (by setting every Sox2 voxels to 0). Overall, this strategy allowed 

us to use the spot function of Imaris to automatically detect both mCherry- and Sox2-expressing cells. 

More generally, this function allows the manual or automatic registration of objects (such as cells) as 

“spots”, whose coordinates can be easily recovered. 

In the clonal analysis experiment, we first ran an automatic detection (“segmentation”) of mCherry-

expressing cells. Then, to distinguish between Sox2+ and Sox2- cells among the mCherry+ population, 

we used a filter based on the median intensity of the Sox2 signal contained in 3 µm-diameter spheres 

centered on mCherry+ cells (spots). A similar automated approach was not feasible for the detection of 

Gs-expressing cells owing the particular cytoplasmic distribution of this enzyme. As a consequence, 

Gs+/Sox2+ NSCs were manually distinguished from Gs-/Sox2+ NPs both on 3D reconstruction of z-

stacks and on digital cross-sections, and each cell was registered with a spot corresponding to their 

respective progenitor category. Proliferating NSCs (aNSCs) and NPs (aNPs) were subsequently 

selected by applying a median intensity filter on the BrdU signal included in a 3 µm-diameter sphere 

around their corresponding spots. Given the complete absence of parenchymal astrocytes in the 

zebrafish telencephalon, the production of oligodendrocytes through an independent lineage (42) and 

the almost complete labelling of parenchymal cells by the neuronal marker HuC/D (Fig. S16), all the 

other cells of the lineage were deemed neurons. Finally, the whole population of Sox2-expressing 

progenitors was automatically segmented and their nearest neighbor distances (NNDs) were calculated 

with the “spots to spots closest distance” function of Imaris. Both the positions and the NNDs of Sox2+ 
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progenitors as well as the positions and identities of the traced cells were exported as excel files for 

further processing.   

The number of Sox2+ cells within and outside the lineage of maximally recombined her4.1-expressing 

NSCs was determined first by automatically segmenting the whole population of Sox2+ cells and then 

by applying a filter based on the median intensity of the mCherry signal within 3 µm-diameter spheres 

centered on Sox2+ spots.  

Analysis of NSC/progenitor markers 

The analysis of the distribution of the different types of pallial progenitors was carried out within a 200 

µm-side cubic region included into our ROI. As Sox2 expression characterizes every progenitor 

contacting the pallial ventricular zone, we started by automatically segmenting Sox2-expressing cells 

and we then sequentially applied distinct median intensity filters to the signals of the different markers 

until sorting out all the different progenitor categories. 

In all experiments, the automatic cell segmentation was systematically verified on 3D reconstruction of 

the pallial z-stacks and corrections were manually made whenever necessary. Furthermore, co-

localizations of markers were also confirmed or edited for every single cell on digital cross-sections. 

The telencephalic transverse sections shown in figure S16 are displayed as single confocal planes. 

Live imaging of NSC fates 

Images recovered from live fish were analyzed as previously described (20). Briefly, the z-stacks 

acquired on successive imaging sessions were first converted into a single file using Imaris (Bitplane) 

and Fiji. Time-points were then manually aligned and intensities adjusted to correct for potential 

fluctuations between imaging sessions. Between 300 and 400 cells were tracked over eight time points 

(23 days) in the pallial Dm region. While the approach implemented here does not allow to distinguish 

between loss of gfap expression and the death of gfap-expressing cells, we emphasize that apoptotic 

cell death was previously shown to be very low during neurogenesis in the adult zebrafish pallium (19). 

Statistical analysis 
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To ensure the consistency of the cell quantifications, the same experimenter carried out all the cell 

counts for a given experiment (lineage tracings, time lapse live imaging, analysis of NSC markers…). 

In addition, when comparisons were done between experiments, we also made sure that the same 

experimenter performed all the measurements in the experiments being compared. Investigators were 

not blind to the time of chase nor were they to the age of fish. No computational randomization methods 

were used, but special attention was paid to maximize the random distribution of fish across conditions. 

Balanced ratios of females and males were included in the different experimental groups as much as 

possible. In the clonal analysis experiments, all the fish batches (except the ones used for the 6 dpi time 

point) arose from crosses between the same pairs; whenever feasible, fish of induced batches were 

collected over several time points. In the full induction lineage tracing experiment, we used a single 

batch of fish that were all induced together. 

Data are presented as mean ± standard error of the mean (s.e.m.), as mean ± standard deviation (s.d.) or 

as mean ± 95% confidence interval (95% CI). Means represent averages per hemisphere per animal (the 

statistics of both hemispheres were averaged in such a way that we were able to include in the analysis 

the brains with only one hemisphere left). Statistical analyses were carried out using InVivoStat (43) 

and plots were created using either Microsoft Excel or R. The normality of the residuals of the responses 

was assessed using normality probability plots and the homogeneity of the variance was inspected on a 

predicted versus residual plot (44). When the responses deviated noticeably from either criterion, they 

were first log10-transformed. In addition, all proportion responses were transformed using the arcsine 

function (44). Data displaying an approximately Gaussian distribution of residuals and homoscedastic 

responses with or without transformation were analysed using parametric tests. When factors (e.g. time 

of chase, cell types) were analysed at more than two levels (6 dpi, 18 dpi, 30 dpi…; her4.1+ NSCs, 

Gfap+ NSCs, NPs…), overall effects were determined either by analysis of variance (ANOVA) or with 

a repeated measures mixed model approach, if animals were measured repeatedly. In this case, the 

within-subject correlations were modelled by a compound symmetric covariance structure. No gateway 

ANOVA approach was used and pairwise comparisons were carried out independently of the results of 

the ANOVA with least significant difference tests (LSD). P-values were adjusted for multiple 
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comparisons according to the Holm's procedure. Single comparisons were analyzed with independent 

(unpaired) Student’s t-tests when the variances of the factor levels were similar, with Welch's t-tests 

when the corresponding variances were unequal and with a paired t-test when the two levels of the 

investigated factor were measured in the same animals. Responses that continued to harbor a significant 

deviation of their residuals from a normal distribution and/or heterogeneous variances after 

transformation were analyzed using non-parametric tests. In that case, overall effects were assessed 

with a Kruskal-Wallis test and all pairwise comparisons with Behrens Fisher tests (44, 45). Categorical 

(binary) responses (interhemispheric fusions) were analyzed using a Fisher’s exact test. 

All the statistical tests performed were two-tailed and their significance level was set at 5% (α=0.05). 

 

Supplementary Text 

 

Brain region analyzed 

The adult zebrafish telencephalon harbors a large neurogenic domain including the territories thought 

to be homologous to the two NSC-hosting niches of the mammalian brain (the subependymal zone of 

the lateral ventricle and the subgranular zone of the dendate gyrus). We decided to focus our study on 

the dorsal part of the pallial Dm region (Fig. S1A and S4). This region harbors numerous dorsally 

exposed NSCs, easily accessible for whole-mount immunohistochemistry and subsequent confocal 

imaging, as well as for intra-vital imaging. Furthermore, in Dm, the minimal migration of their neuronal 

progeny allows clones to remain compact and close to the surface which, beyond alleviating potential 

clonal ambiguities, also permits to capture the whole set of clones in a single acquisition without the 

need to resort to sectioning or tissue clearing. Finally, Dm is currently the best characterized pallial 

germinative area in zebrafish at the molecular level and has the advantage of harboring NSCs with a 

greater activation frequency (20), thus enhancing our chances to capture the clones’ dynamics in this 

overall relatively slow proliferating system (18, 26, 46). Relative to mammalian neuroanatomical 

subdivisions, Dm encompasses the neocortical area, which is neurogenic in adult zebrafish (22). 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/663922doi: bioRxiv preprint first posted online Jun. 9, 2019; 

http://dx.doi.org/10.1101/663922


  

   19 

 

Clonal induction 

To determine the conditions of 4-hydroxytamoxifen (4-OHT) needed to generate unambiguous clones, 

we induced 3 mpf adult zebrafish with decreasing concentrations and exposure times to 4-OHT until 

reaching labelled cell densities compatible with the long-term expansion of clones, a property referred 

to as clonal density (Fig. 1B-D and S5). However, because clones may lose their last NSCs over time, 

a suitable clonal density is necessarily a compromise between starting with a sufficient number of 

induced cells to permit statistical inferences while still maintaining an acceptable risk of fusion between 

adjacent clones during their expansion. Accordingly, we chose 4-OHT parameters resulting in an 

average number of 20.7 ± 2.45 (mean ± s.e.m.) singly labelled cells (or cell clusters) per hemisphere at 

6 dpi (Fig. S5C-E). By that time, although already 46% of the total number of clones had activated, 

only 1.6% of the Sox2+ progenitor population was labelled with mCherry, thus arguing for the clonal 

character of our data (Fig. S6 and S13E). The slow accumulation of mCherry protein precluded the 

reliable counting of labelled cells at earlier time points. We also noted a markedly higher induction rate 

of her4.1-expressing cells in the most posterior part the pallium, which was associated with an evident 

dissociation of the clones at later time points. For these reasons, this pallial area was excluded from the 

analysis based on anatomical landmarks (Fig. S4). Analysis of nearest neighbour distances (NNDs) 

between the centres of Sox2+ clones indicated that their majority lies at a distance greater than 44 µm 

from each other, i.e. about eight NSC diameters (Fig. S5A, B and S13B). Besides the sparse labelling 

of cells following induction, the clonality of our data set is also underscored by the invariable average 

number of clones across all the time points analysed (with the exception of the last at 507 days – see 

below) (Fig. S5C-E). This result indicates that neither clonal fusion nor fragmentation significantly 

affect our data. Finally, to guide the unambiguous assignment of labelled cells to putative clones, we 

developed a clustering algorithm based on the likelihood of putative clones to have arisen from a single 

induction event (Fig. S7 and supplementary text). Together, these preliminary controls warranted the 

clonal character of our data set and allowed its quantitative analysis. 
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Ultimately, we examined how the progenitor population targeted by the her4.1:iCre driver line at 6 dpi 

compared with the overall population of progenitors. In line with the relatively substantial number of 

clones that had already activated by this time (Fig. S6), we observed that a significant number of NPs 

had already formed in the lineage (S17A). Interestingly, the distribution of the main categories of 

progenitors in the lineage was overall similar to that found in the general population (Fig. S17A, B). 

This observation suggests that the upstream progenitor pool (“source”) that drives the growth of the 

NSC population represents only a small fraction of the non-astroglial pallial Sox2+ progenitors. 

Clonality of the last time point 

The last time point of the clonal analysis (507 dpi) displayed a significant increase of its average number 

of clones relative to previous time points, thus raising concerns about its clonality (Fig. S6C). Indeed, 

this increase might reveal an under-clustering of the cells caused by a possible fragmentation of the 

clones. In fact, both the division of unlabeled progenitors and the generation of new unmarked neurons 

in the close vicinity of the traced clones can contribute to the scattering of their comprising cells. 

However, we argue that the main conclusions that we drew about the clonal dynamics at 307 dpi – i.e. 

the appearance of a plateau both in the number of NSCs per active clone and in the proportion of active 

clones – still hold at 507 dpi. Notably, as 507 dpi clones are mainly comprised of neurons, their 

fragmentation would be expected to lead to a decrease in the proportion of active clones, which was not 

the case. Furthermore, while the expanded neuronal content of the clones at 507 dpi might have blurred 

the unambiguous assignment of their cells, their NSC were scored with high confidence owing to the 

lower fraction of active clones at that time. Hence, based both on our high confidence in the 

maintenance of the plateau in the number of NSCs per active clones and on the stability of the proportion 

of active clones - which contradict a fragmentation of the clones-, we concluded that the clone dynamics 

observed at 507 dpi were reliable. They were thus included in our analysis.  

Aging 

Aging of the zebrafish telencephalon has been associated with an increase in NSC quiescence as well 

as with sporadic discrete interhemispheric fusions (29). In addition, NSC density was suggested to 
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remain approximatively constant with advancing age (29). In apparent contradiction with these reports, 

we did not find any significant increase in NSC quiescence (either within or outside the lineage) nor 

were we able to evidence any augmented proportion of pallia displaying interhemispheric fusions with 

advancing age (Fig. S10C, D and S18A-D). Conversely, we found that Sox2-expressing progenitors 

became sparser in old fish and that 44.4% of 20-month-old dorsal pallia displayed major signs of NSC 

depletion (Fig. S13B and S18E-F). Surprisingly, these age-associated NSC losses did not seem to be 

accounted for by a change in their division pattern (Fig. S12D).  

Finally, we noticed that the growth of the NSC population ceased around nine months of age (Fig. 4A 

and S13H). In the absence of any noticeable change in pallial progenitor proliferation with age (Fig. 

S10D), this observation suggests that the upstream source of progenitors responsible for the expansion 

of the NSC population becomes progressively consumed over time. Thus, while the determination of 

the division mode of these progenitors will ultimately require the characterization of specific markers, 

we speculate that their fate may be biased towards NSC production.  

 

Supplemental Theory 

In this supplemental theory we give further details on the calculations supporting the main conclusions 

drawn in the main text. 

Assignment of clonal origin to cells 

The interpretation of lineage tracing data in the zebrafish pallium is complicated by the fact that 

stochastic forces originating from cell divisions in the surrounding tissue can lead to clone 

fragmentation and dispersion, which ultimately leads generic scaling distributions of clone sizes and an 

erasure of biological information (47). As neither the number of induced cells nor the rate of 

fragmentation are known a priori this renders the assignment of clonal progeny potentially ambiguous. 

By implementing a mathematical framework to analyze the spatial statistics of dispersed cells it is 

possible to recover the clonal origin of marked cells with known uncertainty and to unveil information 
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on cell fate behavior of the traced population. We emphasize that this framework provides a general 

platform to assign the clonal provenance of marked cells in parallel contexts. 

If induction events are statistically independent, the number of induced cells, 𝑛,  in a given pallial 

hemisphere is distributed according to a Poisson distribution, 

𝑃(𝑛; 𝜆) =
𝜆(

𝑛! 𝑒
+,, 

where 𝜆 denotes the induction frequency. Then, the distance 𝑑 to the nearest neighbor of an induced 

cell in two spatial dimensions is distributed according to 

𝑔(𝑑; 𝜆) =
𝑑
𝜆0 𝑒

+ 12
0,2 . 

As cells divide and clones expand and disperse, the positions of labelled cells cease to be statistically 

independent such that the distances between nearest neighbors of labelled cells are not distributed 

according to 𝑔(𝑑; 𝜆) for any value of 𝜆. However, if stochastic forces from the surrounding tissue are 

isotropic, the centers of marked clones defined by the average position of cells, (�̅�, 𝑦7) = 𝑁+9	 ∑ (𝑥<, 𝑦<)< , 

remain statistically independent and nearest neighbor distances are distributed according to 𝑔(𝑑; 𝜆). 

Therefore, for a given putative clonal assignment of cells the agreement of the distribution of nearest 

neighbors of clone centers with 𝑔(𝑑; 𝜆) can serve as a test for the correctness of this assignment, such 

that the true clonal assignment has the highest accordance with the assumption of statistical 

independence of clone centers. 

To formalize this basic idea, we begin by considering the probability that a given partition of a set of 

cells into clones, Π, is clonal. Using Bayes theorem, we can write this probability as the product of the 

probability of observing the experimental data (the coordinates of labelled cells) given the clonal 

assignments encoded in a partition, Π, times our prior believe in a clonal partition, 

𝑃9(Π|{𝑥<, 𝑦<}) =
𝐿({𝑥<, 𝑦<}|Π)𝐺(Π)

∫ 𝐿({𝑥<, 𝑦<}|Π)𝐺(Π)dΠ
. 
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The denominator ensures normalization. The likelihood function, 𝐿({𝑥<, 𝑦<}|Π), contains the data-

dependent part of the denominator, while the prior, 𝐺(Π), encodes our a priori belief that a given 

partition is clonal. If induction events and cell fates in distinct clones are each statistically independent, 

the likelihood function takes the form 

𝐿({𝑥<, 𝑦<}|Π) =E𝑔(𝑑<; 𝜆)
(

<F9

, 

where the product goes over all putative clones in the partition Π and 𝑑< are the nearest neighbor 

distances of their respective centres of mass. The parameter 𝜆 is determined self-consistently from the 

number 𝑛 of putative clones in the partition by = 1/I2𝜋𝜌 , with 𝜌 being the number of putative clones 

in the partition Π  divided by the area of the analyzed tissue sample. Intuitively, the likelihood is 

therefore a measure for the accordance of the clonal partition Π with the hypothesis of independent 

labelling. 

The assignment of the clonal provenance of labelled cells can be improved by considering further 

knowledge we might have on cell proliferation or cell migration. Specifically, in the pallium, there are 

biological and physical limits on cell migration, and therefore on the degree of clone dispersion. Cells 

are subject to stochastic forces exerted by the surrounding tissue leading to their diffusive displacement 

(48). If 𝐷 is the corresponding effective diffusion constant, cell positions at a time 𝑡 after labelling are 

approximately normally distributed, 

𝑃(𝑟, 𝑡) ≈
1

√4𝜋𝐷𝑡
𝑒+

S2
TUV, 

where 𝑟 is the distance from the initial position of the induced cell. With this, we consider a tissue 

sample containing 𝑛 putative clones. Then, the maximum distance to the clone centre across all clones 

in the tissue is obtained by calculating the n-th order statistics, i.e. 
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𝐺(max 𝑟 , 𝑡) =
2
9
0+(

√𝜋2𝐷𝑡
	𝑛	𝑒+

Z2
TUV 	

⎝

⎜
⎛
1 −

2
𝜋

_ 𝑒+`2d𝑦

+abc d
√TUV

e
⎠

⎟
⎞

(+9

. 

For the tail of the distribution, max 𝑟 ≫ √𝐷𝑡, this expression is well approximated by 

𝐺(𝑚𝑎𝑥 𝑟 , 𝑡) ≈
1

√4𝜋𝐷𝑡
𝑒+

(lmZ 1n)2
TUV ≡ 𝐺(𝛱), 

which we used as a prior in 𝑃9(Π|{𝑥<, 𝑦<}). We calibrated the effective diffusion constant, 𝐷, by 

selecting a sample where clonal assignments of labelled cells could be unambiguously made by visual 

inspection. We then determined 𝐷 such that the number of clones counted by visual inspection was 

equal to the algorithmically calculated number of clones (see below) and obtained 𝐷 = 1.8	𝜇𝑚0/𝑑. 

This means that, on average, within 100 days a labelled cell covers an area of 180	𝜇𝑚0 as a result of 

stochastic forces exerted by the surrounding tissue. 

As the posterior probability trivially depends on the number of terms comprising the log likelihood, and 

therefore on the number of assigned clones in the partition, Π, we compare 𝑃9 to the posterior probability 

𝑃e in a scenario, where the hypothesis of statistical independence of clone centers is true. We therefore 

seek the clonal partition that maximize their ratio, 

𝐾 =
𝑃9(Π|{𝑥<, 𝑦<})
𝑃e(Π|{𝑥<, 𝑦<})

 

In this case, we can calculate the posterior analytically with the likelihood given by 

𝐿e({xu, yu}|Π) = w_ 𝑔(𝑑, 𝜆)0d𝑑
x

e
y
(

=
1

√𝜋4𝐷𝑡
w
√𝜋
4𝜆y

(

. 

As the number of possible partitions of labelled cells into clones is too large to be computationally 

accessible, we employ a hierarchical or coarse-graining approach. Starting from a partition, where the 

number of clones is equal to the number of labelled cells, at each iteration we merge the two clones 
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whose centers of masses have the smallest distance. While this approach bears the risk that the true 

clonal partition might not be tested, it allows us to obtain an approximation of this partition within only 

𝑛 iterations. The partition with the maximum value of 𝐾 is taken for downstream analysis. To estimate 

the uncertainty associated with the assignment of clonality, we define all partitions whose value of 𝐾 

exceeds a threshold, 

Πz{|(m{ = }Π ∈ log 𝐾 > max
�

log(𝐾) − log 𝛼� 

as credibly clonal. 

We set 𝛼 to 0.05 such that partitions having a value of 𝐾 exceeding 5% of the maximum value are 

considered credible. We found that for all analyzed samples the mode of the posterior distribution and 

the corresponding credibility bounds were well defined. For each pallial hemisphere analyzed, 

subsequent clonal analysis was performed for the partition corresponding to the maximum value of 𝐾 

and for those corresponding to the lower and upper boundaries of the credibility interval. 

Maximum likelihood estimation 

To unveil the dynamical rules that underlie NSC fate regulation in the pallium, we employ the idea of 

maximum likelihood estimation. Specifically, we seek to identify the model, defined by a set of 

parameters Θ = (Θ9, Θ0, … ), that has the highest probability, 𝑃(Θ|𝐸), given the experimental data, 𝐸. 

According to Bayes’ theorem, this probability is proportional to the probability 𝑃(𝐸|Θ) of obtaining 

the experimental evidence if a certain model Θ is true while 𝑃(Θ) gives prior belief in the model,  

𝑃(Θ|𝐸) = �(�|�)�(�)
∫ 1��(�|�)�(�)�

 . 

The denominator ensures normalization. The probability 𝑃(𝐸|Θ) is called likelihood, 𝐿�(Θ) = 𝑃(𝐸|Θ). 

Without prior knowledge, i.e. if the prior 𝑃(Θ) follows a uniform distribution, the principle of maximum 

likelihood states that the model with the highest probability is the one that maximizes the likelihood 

function, 𝐿�(Θ).  
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In our clonal labelling assay, the experimental evidence is given by the frequency 𝑓(�,(�,V  of 

observations of clones with 𝑛� NSCs (“s” stands for stem cells)  and 𝑛( neurons at time 𝑡 post induction. 

Since the clonal observations are statistically independent, we can rewrite the likelihood function as  

𝐿(�,(�,V(Θ) = 	𝑁
+9E E 𝑃(𝑛�, 𝑛(, 𝑡|Θ)���,��,�

(�,(�V

, 

with 

𝑁+9 =
�∑ 𝑓(�,(�,V(�,(� �!
�∏ 𝑓(�,(�,V(�,(� �!

, 

where the prefactor 𝑁+9 is determined by normalization and the products and the sums go over all time 

points and all clonal compositions. 

In order to obtain the likelihood function, we need to calculate the probability 𝑃(𝑛�, 𝑛(, 𝑡|Θ) to find a 

clonal composition with 𝑛� NSCs and 𝑛( neurons at time 𝑡. The time evolution of this probability is 

given by a master equation of the form,  

𝑑
𝑑𝑡 𝑃

(𝑛, 𝑡|Θ) = � 𝜔(�,(𝑃(𝑛�, 𝑡|Θ) − 𝜔(,(�𝑃(𝑛, 𝑡|Θ)
x

(��,(�� Fe

. 

The transition rates, 𝜔(,(� , between states with different cellular composition carry the details of the 

model. For simple cases the master equation can be solved analytically, however, generally, numerical 

methods are necessary to find approximative solutions. Using Gillespie’s algorithm, we generated 

stochastic trajectories whose accumulation provided histograms and consequently the probability 

distribution 𝑃(𝑛�, 𝑛(, 𝑡|Θ). As extinct clones (𝑛 = 0) are experimentally undetectable we define the 

clone size distribution of active clones,  

𝑃(�el (𝑛, 𝑡|Θ) = �((,V|�)
9+�(e,V|�)

	. 
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Since maximizing the likelihood function is equivalent to maximizing its logarithm, we consider the 

logarithm of the likelihood function, 

log 𝐿�(Θ) = log𝑁+9 +� � 𝑁(�,(�,V log 𝑃(�e
l (𝑛�, 𝑛(, 𝑡|Θ).

(�,(�,VV

	

As the normalization factor 𝑁+9 is independent of the model parameters, we can neglect this prefactor 

in the subsequent analysis. Therefore, by substituting a particular set of experimental data in the 

probability distribution 𝑃(𝑛, 𝑡|Θ), we obtain the value of the likelihood function for a given model. 

Uncertainty and credibility intervals 

The finite size of the experimental and numerical samples and the variability between fish generate 

uncertainty in the estimation of the model parameters. To represent this uncertainty, we present the 

estimated parameters with margins. We define all parameters whose likelihood is above a given 

threshold 𝛼 as plausible, resulting in a credibility interval, 

𝐶𝑅 = �Θ� 𝐿�(Θ)𝐿�(Θ∗)
> 𝛼¡. 

Here, we chose 𝛼 = 0.05, meaning that parameter values, whose likelihood is more than 5% of the 

value of the maximum likelihood, are considered credible. Following this, we present the value of each 

parameter Θ< with its credibility interval, Θ<∗ ± (𝑚𝑎𝑥¥¦{Θ<	} − Θ<∗, Θ<∗ − 𝑚𝑖𝑛¥¦{Θ<	}). 

Inference of the best fitting model 

NSC compartment 

To begin, we focused our analysis on NSCs (Sox2+ cells) alone. Motivated by the observed plateau in 

the fraction of persisting NSC-containing clones, we hypothesized that the NSC population is 

heterogeneous and contains a subpopulation of long-lived reservoir NSCs (hereafter denoted as A* 

cells), giving rise to a downstream population of operational NSCs (referred to as A cells), whose fates 

are overall biased towards differentiation. In order to give rise to a plateau in the fraction of surviving 
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clones, labelled A* need to be maintained over the time of the experiment in such a way that loss via a 

potential neutral drift is negligible. The saturation in the average sizes of active clones (Fig. 3C) 

suggests that the A* population is not downstream of A (in which case active clones would accumulate 

NSCs over time) but feeds into the A population. The simplest way the A* population can be maintained 

over long times while at the same time giving rise to cells of type A is via asymmetric cell divisions. 

We denote the rate with which 𝐴∗ divides asymmetrically to give rise to both another 𝐴∗ and an 𝐴 cell 

by 𝜈. We note that while an asymmetrically dividing populations of reservoir NSCs is the simplest 

process in agreement with the clonal data, we cannot rule out a more complex cell fate behavior in this 

compartment, such as the existence of a closed niche or further heterogeneity.  

The size of the 𝐴 compartment can only increase by symmetric proliferating divisions or decrease due 

to symmetric differentiating divisions or direct differentiations. We denote the rates for both processes 

with 𝜆 and 𝜇, respectively. If these operational NSCs reverted back to the reservoir NSC compartment 

to maintain homeostasis such a process would necessarily need to be balanced by a loss of reservoir 

NSCs, for example by direct differentiation to operational NSCs. Such a process would, however, lead 

to clonal loss due to chance fluctuations and is therefore incompatible with the clonal data. Reversion 

of operational NSCs therefore must be rare or nonexistent. In summary, the dynamical rules governing 

cell fates of the traced NSC population can be written in chemical notation as:  

𝐴∗ ⟶ 𝐴∗ + 𝐴  With rate 𝜈, 

𝐴	 ⟶ 𝐴 + 𝐴  With rate 𝜆, 

𝐴	 ⟶ ∅               With rate 𝜇. 

Performing maximum likelihood estimation, we obtain the best fit for parameters corresponding to a 

log likelihood of log 𝐿�(Θ∗) = −791.55, with rates 

𝜈 = 0.007 ± (0.005,0.0007	) d-1, 

𝜆 = 0.006 ± (0.003, 0.001) d-1, 
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𝜇 = 0.017 ± (0.012, 0.003) d-1. 

In summary, we find the best fitting parameters defining a model for a heterogeneous population of 

NSCs consisting of two subpopulations where, on average,	𝐴∗cells give rise to 𝐴 cells every 143 ±

(15.87,59.52) days, A cells duplicate  every 166.67 ± (33.30, 55.56) days and  are lost through 

neuronal differentiation every 58.82 ± (12.6, 24.34) days. In the field of stochastic processes, this 

model is often referred to as a birth-death process with immigration (30). If 𝜆 < 𝜇, as is the case here, 

this model ultimately gives rise to a steady state in the clone size distribution, which, in the long-term, 

is representative of the tissue. The best fitting parameters suggest that the traced NSC population is 

overall homeostatic, an observation that we were able to independently confirm by our experiments 

(Fig. 1E, F and 4D-F). Thus, in the steady state the ratio of A* to A cells is = (𝜇 − 𝜆)/𝜈 = 1.57 ±

(0.095,0.3), such that the traced NSC population is comprised for 61% of A* cells (reservoir NSCs) 

and for 39% of A cells (operational NSCs).  

To challenge the hypothesis of heterogeneity in the NSC population, we asked whether alternative 

models involving a homogeneous (equipotent) NSC population could equally explain the clonal data.  

First, such a model would have to predict the stochastic dynamics of active clones. The quality of such 

a prediction is measured by the value of the maximum of the log likelihood. In order to quantify the 

relative capacity of different models to describe the clonal data we estimated the relative information 

lost in describing the experimental data in each case, a quantity known as Akaike information criterion 

(AIC). Secondly, in addition to the statistics of active clones, these models need to predict the time 

evolution of lost clones, in particular the plateauing of the fraction of surviving clones. 

In the simplest case, if the NSC population is equipotent the dynamics is determined by a simple birth-

death model similar to the one proposed in other systems (49). In chemical notation, 

𝐴	 ⟶ 𝐴 + 𝐴           with rate 𝜆 

𝐴	 ⟶ ∅                   with rate 𝜇. 
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The maximum of the log likelihood is −793.2. Calculating the Akaike Information Criterion (AIC) for 

each of the two models (indices 1 and 2 respectively refer to the heterogeneous and the homogeneous 

NSC populations), we obtain			𝐴𝐼𝐶9 = 1589	 and 𝐴𝐼𝐶0 = 1590. This means that, after considering the 

different number of parameters estimated in each case, the equipotent model is by a factor of 0.6 less 

likely to minimize information loss in describing the clonal data, in favor of NSC heterogeneity. While 

the maximum values of the log likelihoods are relatively similar, such a model containing an equipotent 

NSC population necessarily leads to a rapid loss of labelled clones and therefore is incompatible with 

the observation of a plateauing fraction of active clones over long times. 

A different scenario that can result in the observed non-zero plateau with a homogeneous NSC 

population is a closed-niche model based on the regulation of NSC fates by their number in the niche, 

as suggested by Basak et al. (14) for the adult mouse sub-ependymal zone. In this model, the probability 

that a NSC follows either proliferation or differentiation, is coupled to the number of NSCs present in 

the niche, 

𝐴	 ⟶ 𝐴 + 𝐴           with rate 𝜆	𝑓(𝑛², 𝑛³, 𝑡), 

𝐴	 ⟶ ∅                   with rate 𝜆	(1 − 𝑓(𝑛², 𝑛³, 𝑡)), 

where 𝑓(𝑛², 𝑛³, 𝑡) = exp[−	(𝑛² + 𝑛³ − 𝑛e) 𝑛⁄ ] is the probability of symmetric proliferation and 𝑛² 

and 𝑛³  are, respectively, the number of labeled and unlabeled cells in the niche at time 𝑡. 𝑛e,	𝑛 and 𝜆 

are parameters of the model.  Our simulations demonstrate that although this model can result in a 

plateau for the average number of NSCs in active clones, it can poorly resolve the value of the plateau 

in the fraction of active clones and the time scale over which it is reached. The value of the maximum 

log likelihood for this model is log 𝐿�(Θ∗) = −817.88, meaning that the niche-based model is 

1.65 × 10+0T fold less likely than the one comprising a heterogenous population. It is important to note 

that this does not rule out the existence of a closed niche governing a heterogeneous NSC population 

as discussed above. 
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To account for a potentially biased cell labelling upon induction, we initialized our simulations in such 

a way that clone sizes and cell type compositions resembled the clonal data from brains taken shortly 

after labelling (at 6dpi time). We then made predictions for all subsequent time points. 

Neuron compartment 

Having determined the dynamical rules and parameters governing cell fate behavior of the traced NSC 

population, we then asked whether such a model could predict the neuronal output of the labelled NSC 

population over time. To this end, we considered all the possible fates by which NSCs could give rise 

to neurons,  

𝐴∗ ⟶ 𝐴∗ + 𝐴         With rate 𝜈, 

𝐴	 ⟶ 𝐴 + 𝐴           With rate 𝜆, 

𝐴	 ⟶ 𝐴+ 𝑁           With rate 𝜅, 

𝐴	 ⟶ 𝑁 +𝑁          With rate 𝜇9, 

𝐴	 ⟶ 𝑁                  With rate 𝜇0. 

and used the maximum likelihood parameters obtained for the NSC model ( 𝜈 = 0.007 d-1, 𝜆 = 0.006 

d-1, and 𝜇9 + 𝜇0 = 0.017 d-1). We applied maximum likelihood estimation to predict the neuronal 

output of operational NSCs. Using the best fitting parameters, 𝜅 = 0.018 ± (0.0007,0.0009) and 𝜇9 =

0.004 ± (0.0001,0.0003), and the steady state value for the ratio of 𝐴∗ to 𝐴 cells (𝑟 = 1.57), allowed 

us to quantify the fractions of different fate outcomes. Specifically, the probabilities of different fate 

outcomes are related to the rates of symmetrical, asymmetrical, and direct differentiating events,  

𝑃»¼¥/»¼¥ =
(,½d¾)

(,½d¾)½¿½À
, 

𝑃»¼¥/( =
¿

(,½d¾)½¿½À
, 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/663922doi: bioRxiv preprint first posted online Jun. 9, 2019; 

http://dx.doi.org/10.1101/663922


  

   32 

 𝑃(/( =
ÀÁ

(,½d¾)½¿½À
, 

𝑃( =
À+ÀÁ

(,½d¾)½¿½À
 , 

where 𝑃»¼¥/»¼¥, 𝑃»¼¥/(, 𝑃(/(, and 𝑃( are, respectively, probabilities of	𝑁𝑆𝐶/𝑁𝑆𝐶,  𝑁𝑆𝐶/𝑛, 𝑛/𝑛, and 

𝑛 fate outcomes. Our analysis shows that 𝑁𝑆𝐶/𝑁𝑆𝐶 divisions constitute 𝑃»¼¥/»¼¥ = 33 ±

(0.05,0.1)% while 𝑁𝑆𝐶/𝑛, 𝑛/𝑛 and 𝑛 constitute, respectively, 𝑃»¼¥/( = 35 ± (0.01,0.1)%, 𝑃(/( =

7 ± (0.03,0.04)% and 𝑃( = 25 ± (0.05,0.01)% of all possible fates. As demonstrated in Fig. 3E, these 

percentages are in good agreement with the values obtained via our live imaging experiments. 
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Fig. 1. Lineage tracing of her4.1-expressing NSCs shows homeostasis. (A) Summary of markers 

characterizing Dm pallial progenitors. (B) Cre recombination was sparsely induced in 3 mpf (months 

post-fertilization) her4.1:iCre;ubi:Switch double transgenic adults by 4-hydroxytamoxifen (4-OHT), 

resulting in mCherry expression in recombined NSCs and their progeny. Analysed time points (arrows) 

span between 6 and 507 days-post-induction (dpi). (C) Dorsal view of a representative pallium showing 

sparsely induced cells at 6 dpi (dotted area to the pallial Dm territory of interest, Fig. S5). Boxed areas 

are magnified to illustrate the different cell types traced (yellow arrows). Proliferating progenitors were 

labelled by a 24h BrdU pulse. NSCs are Gs+ and Sox2+, NPs are Sox2+ only. In contrast to aNSCs and 

aNPs, qNSCs and qNPs did not incorporate BrdU during the pulse. (D) Cell type composition of the 

mCherry+ population at 6 dpi. n=6 brains. (E)  Example of clustering at 183 dpi. Left: dorsal view of a 

three-dimensional reconstruction of a hemisphere. The spots registering the coordinates of traced cells 

(red) are shown (white dots). Right: two-dimensional map of the clones identified by the clustering 

algorithm. Clones are color-coded. (F) Average number of traced (mCherry+) Gs+, Sox2+ NSCs across 

all time points analyzed. One-way ANOVA: F(8,37)=1, p=0.45; all pairwise comparisons: LSD test 

followed by Holm’s adjustment. Error bars: 95% CI. (G) Average number of traced (mCherry+) Sox2+ 

progenitors across all time points analyzed. One-way ANOVA: F(8,37)=1.65, p=0.14; all pairwise 

comparisons: LSD test followed by Holm’s adjustment. Error bars: 95% CI. (F, G) n= 6, 3, 3, 3, 5, 6, 

7, 8 and 6 brains at 6, 18, 30, 64, 91, 125, 183, 307 and 507 dpi, respectively.   
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Fig. 2. Hierarchical organization of pallial NSCs. (A) Dorsal view of a pallial hemisphere 

exemplifying some clones recovered at 64 dpi (magnification of the boxed area shows one clone). The 

analyzed region is outlined with dotted lines. (B) Three-dimensional reconstruction of clones at 

different time points illustrating the progressive increase in their NSC content until 183 dpi. (C) Time 

evolution of the number of NSCs (i.e. Sox2+ cells) per active clone. (D) Time evolution of the 

proportion of active clones (i.e. clones containing at least one NSCs). (C, D) Box and whisker plots: 

experimental data. The central bold bar and the upper and lower edges of the boxes represent 

respectively the mean and s.e.m. of the most likely clonal composition; the whiskers of the box 

correspond respectively to the 95% CI of the smallest and biggest clustering that are still within the 

95% CI of the most likely clustering (see supplementary text). They reflect the combined uncertainty 

stemming from the clonal reconstruction and the finite sample size. (E) Left: three-dimensional (3D) 

reconstruction of a multi-celled fully neuronal clone at 507 dpi. Right: Optical section along the plane 

defined by the dotted line on the 3D reconstruction (left). Note that the clone does not contain NSCs 

anymore and is completely detached from the ventricular zone (dotted line). (F) Time evolution of the 

ratio of neurons to NSCs in all traced clones. (G) Schematic illustrating the simplified model used for 

MLE. The inferred values of the parameters are given in red (frequency of events per cell; rNSC à 

rNSC+oNSC: n=0.007d-1; oNSC à oNSC+oNSC: l=0.006d-1; oNSCàloss: µ=0.017d-1). (C, D, F) 

Clones as defined by the algorithm. n= 6, 3, 3, 3, 5, 6, 7, 8 and 6 brains at 6, 18, 30, 64, 91, 125, 183, 

307 and 507 dpi, respectively. Solid lines depict modelling predictions. 
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Fig. 3. Time-lapse intra-vital imaging analysis of NSC division patterns. (A) Dorsal view (3D 

reconstruction) of a pallial hemisphere imaged from a live casper;gfap:dTomato fish. The region 

analyzed is surrounded by the dotted line. The green and blue squared areas are displayed in B and D, 

respectively. (B) Example of a NSC that underwent two symmetric amplifying divisions. Green spots 

are superimposed to the NSCs of interest and tracks (green) with red dots indicate imaging sessions 

where the NSCs were still present (blue arrows point to the moments of image acquisition). (C) Relative 

proportions of the different types of NSC divisions inferred from their tracking in live fish (color-

coded). n: loss of gfap expression (NP/future neuron). 2 brains analyzed. (D) Example of a direct 

differentiation of a NSC (blue arrow). * mark surrounding quiescent NSCs as visual landmarks. (E) 

Relative proportions of NSC fates leading to expansion (symmetric amplifying divisions, green), 

maintenance (asymmetric divisions, red) and consumption (symmetric neurogenic divisions and direct 

neuronal differentiations, blue). Light colors are the results of our simulations. Note the overall balance 

in NSC fates. n=2 brains. Error bars: s.d. and credibility interval (see supplementary theory) for the in 

vivo data and the modelling, respectively. (F) Modelling of NSC dynamics. The inferred proportions 

and fate frequencies (in red, values per cell) of both reservoir and operational NSCs among all NSC 

activation events are indicated (oNSCàoNSC+n: k=0.018d-1; oNSCàn+n: µ1=0.004d-1; oNSCàn: 

µ2=0.013d-1). The corresponding curves are plotted in green above experimental data in panels C, D 

and F of figure 2. Note that NSC/NSC fates monitored by live imaging include rNSC/oNSC and 

oNSC/oNSC divisions. 
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Fig. 4. Ongoing production of her4+ NSCs by an upstream progenitor source. (A) Corresponding 

quantification. One-way ANOVA: F(8,37)=8.06, p<0.001; all pairwise comparisons: LSD test followed 

by Holm’s adjustment. * p< 0.05, ** p<0.01, ***p<0.001. n= 6, 3, 3, 3, 5, 6, 7, 8 and 6 brains at 3.1, 

3.6, 4, 5.1, 6, 7.1, 9.2, 13.2 and 19.6 mpf (months post-fertilization), respectively. Error bars: s.e.m. (B) 

Scatter plot showing the absence of correlation between the total number of NSCs in the pallial region 

analyzed and the number of NSCs in the traced her4 lineage. n= 6, 3, 3, 3, 5, 6, 7, 8 and 6 brains at 6, 

18, 30, 64, 91, 125, 183, 307 and 507 dpi, respectively. (C) Time line of the experiment. Maximal 

recombination of the ubi:Switch reporter was induced by treating her4.1:iCre;ubi:Switch transgenic 

fish with 4-OHT repetitively over 5 days. (D) Left: Dorsal view of pallia immunostained for mCherry 

and Sox2 at 6, 91 and 190 dpi. Right: Segmented Sox2+ NSCs (spots). Red spots: NSCs within the 

her4.1 lineage (Sox2+,mCherry+); white spots: mostly newly formed NSCs (Sox2+,mCherry-). (E) 

Quantification of Sox2+,mCherry+, Sox2+,mCherry- and Sox2+ cells in the Dm territory of interest. One-

way ANOVA: Sox2+,mCherry+ cells: F(2,13)=0.59, p=0.5697; Sox2+,mCherry- cells: F(2,13)=6.02, 

p=0.0141; Sox2+ cells: F(2,13)=9.06, p=0.0034. All pairwise comparisons: LSD test followed by Holm’s 

adjustment. * p< 0.05, ** p<0.01. Error bars: s.e.m. n= 5, 6, and 5 brains at 6, 91 and 190 dpi, 

respectively. (F) Proposed hierarchical organization of pallial neural progenitors. 
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