index - Interférométrie Accéder directement au contenu

Derniers dépôts, tout type de documents

We present a design strategy for grating magneto-optical traps (GMOTs). It takes the three most relevant optical properties for laser cooling (radiation pressure balance, specular reflection cancellation, and diffracted polarization) to build a scalar figure of merit. We use a rigorous coupled wave analysis (RCWA) simulation to find a geometry that maximizes this figure of merit. We also introduce a criterion that takes into account the robustness of the manufacturing processes to select a geometry that is reliable to manufacture. Finally, we demonstrate that the fabricated grating exhibits the expected optical properties and achieves typical GMOT performance.

Continuer la lecture Partager

We have observed the decoherence of a lithium atomic wave during its propagation in the presence of the radiation emitted by tungsten-halogen lamps, i.e., decoherence induced by blackbody radiation. We used our atom interferometer to detect this decoherence by measuring the atom fringe-visibility loss. The absorption of a photon excites the atom, which spontaneously emits a fluorescence photon. The momenta of these two photons have random directions, and this random character is the main source of decoherence. All previous similar experiments used small-bandwidth coherent excitation by a laser, whereas incoherent radiation involves several technical and conceptual differences. Our approach is interesting as blackbody radiation is omnipresent and decoherence should be considered if particles resonant to electromagnetic fields are used.

Continuer la lecture Partager

This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions.

Continuer la lecture Partager

We report here on the realization of light-pulse atom interferometers with large-momentum-transfer atom optics based on a sequence of Bragg transitions. We demonstrate momentum splitting up to 200 photon recoils in an ultracold atom interferometer. We highlight a new mechanism of destructive interference of the losses leading to a sizable efficiency enhancement of the beam splitters. We perform a comprehensive study of parasitic interferometers due to the inherent multiport feature of the quasi-Bragg pulses. Finally, we experimentally verify the phase shift enhancement and characterize the interferometer visibility loss

Continuer la lecture Partager

Mon travail de thèse, réalisé au LCAR, contribue au développement de nouveaux interféromètres atomiques fondés sur l'utilisation de condensats de Bose-Einstein et de réseaux optiques. Ces nouveaux interféromètres sont envisagés afin d'améliorer la sensibilité de capteurs inertiels, pour tester la gravitation ou de nouveaux modèles en physique des particules. La spécificité de l'interféromètre en construction au LCAR est sa grande séparation spatiale permettant de mettre en forme les potentiels électromagnétiques et gravitationnels à proximité des bras de l'interféromètre. Cette approche ouvre la voie à de nouvelles mesures en physique fondamentale et en métrologie. Notre dispositif est dimensionné afin de réaliser des tests de neutralité atomique avec une nouvelle méthode fondée sur la phase d'Aharonov-Bohm Scalaire. Une amélioration de plusieurs ordres de grandeur par rapport aux limites actuelles est attendue. Dans mon manuscrit de thèse, je commence par exposer les principes d'interférométrie atomique qui ont guidé le dimensionnement de notre interféromètre. Je décris la source d'atomes ultra-froids et les premiers résultats de fontaine atomique obtenus avec nos condensats de Bose-Einstein. Pour réaliser nos interféromètres atomiques, les condensats sont manipulés par des réseaux optiques dans le régime de quasi-Bragg. Afin de mieux comprendre les limites de ces séparatrices atomiques, j'ai mené une étude numérique et expérimentale que j'expose dans le troisième chapitre. Je commente notamment l'impact lié à la nature multi-ports des interféromètres atomiques réalisés dans ce régime, qui mènent à des interféromètres parasites pouvant limiter l'estimation de la phase. Enfin, lors de ma thèse j'ai démontré des mesures de déphasage interférométrique avec une séparation en impulsion correspondant à l'impulsion de 170 photons. Ce transfert d'impulsion est au niveau de l'état de l'art pour ce type de dispositif et constitue un prérequis pour l'obtention des séparations spatiales envisagées.

Continuer la lecture Partager

Sujets

Birefringence Polarisabilité Diffraction de Bragg Aharonov-Bohm effect Stark effect Frequency doubling Aharonov-Bohm Magneto-optics Atomic interferometry Diffraction Atom interferometer Coherence Damping Condensats de Bose-Einstein Polarizability Atom Optics Hydrogen Cold atoms Atom inerteferometry Condensat de Bose-Einstein Atomes froids Diode-pumped solid state lasers Electro-optics Parallel velocity Experimental results Laser cooling of atoms Adsorbats moléculaires Vibrations Amortissement Diffraction d'une onde atomique Bose-Einstein condensate Atom Interferometry Accurate measurement Atom interferometry Optical pumping Diffraction laser Birefringences Fringe contrast Atom optics CAVITY Détecteur à fil chaud Collisions atome-atome Aharonov-Casher Glory oscillations Electric polarizability Interferometry Cohérence Condensates Fringe visibility High precision Effet Zeeman Lithium Matter wave Atom Phase géométrique Diffraction atomique par laser Atomic polarisability Aharononov-Bohm Geometric phases Mesures de précision Frequency metrology Compensation Axion Interférométrie atomique Anisotropy Muonic hydrogen ATOMS Cooling effect Topological phase Fringe phase shift Laser diffraction Bose Einstein condensate FIELD Friction Geometrical phase Atome de lithium High phase sensitivity Atom chip Close-coupling Experiment Decoherence Atom diffraction Diffraction atomique Lithium atoms High finesse Sagnac effect Fringevisibility Effet Aharonov-Bohm Franges d'interférence Coupled oscillators Atom interferometers Non reciprocal effect Ring cavity Optique atomique Effet Stark Atomic Bloch states Condensats Bragg diffraction He-McKellar-Wilkens Zeeman effect

Statistiques

Nombre de fichiers déposés

62

Nombre de notices déposées

43